87 research outputs found

    Feature-Adaptive and Hierarchical Subdivision Gradient Meshes

    Get PDF
    Gradient meshes, an advanced vector graphics primitive, are widely used by designers for creating scalable vector graphics. Traditional variants require a regular rectangular topology, which is a severe design restriction. The more advanced subdivision gradient mesh allows for an arbitrary manifold topology and is based on subdivision techniques to define the resulting colour surface. This also allows the artists to manipulate the geometry and colours at various levels of subdivision. Recent advances allow for the interpolation of both geometry and colour, local detail following edits at coarser subdivision levels and sharp colour transitions. A shortcoming of all existing methods is their dependence on global refinement, which makes them unsuitable for real-time (commercial) design applications. We present a novel method that incorporates the idea of feature-adaptive subdivision and uses approximating patches suitable for hardware tessellation with real-time performance. Further novel features include multiple interaction mechanisms and self-intersection prevention during interactive design/editing

    PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR DOO-SABIN SUBDIVISION SURFACES

    Get PDF
    This thesis presents a new technique for the reconstruction of a smooth surface from a set of 3D data points. The reconstructed surface is represented by an everywhere -continuous subdivision surface which interpolates all the given data points. And the topological structure of the reconstructed surface is exactly the same as that of the data points. The new technique consists of two major steps. First, use an efficient surface reconstruction method to produce a polyhedral approximation to the given data points. Second, construct a Doo-Sabin subdivision surface that smoothly passes through all the data points in the given data set. A new technique is presented for the second step in this thesis. The new technique iteratively modifies the vertices of the polyhedral approximation 1CM until a new control meshM, whose Doo-Sabin subdivision surface interpolatesM, is reached. It is proved that, for any mesh M with any size and any topology, the iterative process is always convergent with Doo-Sabin subdivision scheme. The new technique has the advantages of both a local method and a global method, and the surface reconstruction process can reproduce special features such as edges and corners faithfully

    Finite element analysis enhanced with subdivision surface boundary representations

    Get PDF
    In this work we develop a design-through-analysis methodology by extending the concept of the NURBS-enhanced finite element method (NEFEM) to volumes bounded by Catmull-Clark subdivision surfaces. The representation of the boundary as a single watertight manifold facilitates the generation of an external curved triangular mesh, which is subsequently used to generate the interior volumetric mesh. Following the NEFEM framework, the basis functions are defined in the physical space and the numerical integration is realized with a special mapping which takes into account the exact definition of the boundary. Furthermore, an appropriate quadrature strategy is proposed to deal with the integration of elements adjacent to extraordinary vertices (EVs). Both theoretical and practical aspects of the implementation are discussed and are supported with numerical examples.</p

    Smooth Subdivision Surfaces: Mesh Blending and Local Interpolation

    Get PDF
    Subdivision surfaces are widely used in computer graphics and animation. Catmull-Clark subdivision (CCS) is one of the most popular subdivision schemes. It is capable of modeling and representing complex shape of arbitrary topology. Polar surface, working on a triangle-quad mixed mesh structure, is proposed to solve the inherent ripple problem of Catmull-Clark subdivision surface (CCSS). CCSS is known to be C1 continuous at extraordinary points. In this work, we present a G2 scheme at CCS extraordinary points. The work is done by revising CCS subdivision step with Extraordinary-Points-Avoidance model together with mesh blending technique which selects guiding control points from a set of regular sub-meshes (named dominative control meshes) iteratively at each subdivision level. A similar mesh blending technique is applied to Polar extraordinary faces of Polar surface as well. Both CCS and Polar subdivision schemes are approximating. Traditionally, one can obtain a CCS limit surface to interpolate given data mesh by iteratively solving a global linear system. In this work, we present a universal interpolating scheme for all quad subdivision surfaces, called Bezier Crust. Bezier Crust is a specially selected bi-quintic Bezier surface patch. With Bezier Crust, one can obtain a high quality interpolating surface on CCSS by parametrically adding CCSS and Bezier Crust. We also show that with a triangle/quad conversion process one can apply Bezier Crust on Polar surfaces as well. We further show that Bezier Crust can be used to generate hollowed 3D objects for applications in rapid prototyping. An alternative interpolating approach specifically designed for CCSS is developed. This new scheme, called One-Step Bi-cubic Interpolation, uses bicubic patches only. With lower degree polynomial, this scheme is appropriate for interpolating large-scale data sets. In sum, this work presents our research on improving surface smoothness at extraordinary points of both CCS and Polar surfaces and present two local interpolating approaches on approximating subdivision schemes. All examples included in this work show that the results of our research works on subdivision surfaces are of high quality and appropriate for high precision engineering and graphics usage

    Subdivision Surface-Based Geometric Modeling System

    Get PDF
    A method for surface modeling of images to produce realistic images or to provide simulations with accurate surface information is provided. More particularly, the present invention relates to a new subdivision depth computation technique and to an improved label-driven adaptive subdivision technique for use in Catmull-Clark subdivision surface modeling systems. The method comprises computing a subdivision depth to determine the number of recursive subdivisions which may be performed on a control mesh to generate a plurality of finer mesh elements while preserving a predetermined error tolerance, and using the computed subdivision depth to construct an adaptively refined mesh that is substantially similar to the control mesh within the predetermined error tolerance. Limit control surfaces with and without extraordinary vertices may be analysed using the method of the invention. In another aspect, a software program for accomplishing the method of the present invention is provided

    Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces

    Get PDF
    This paper introduces a novel method to convert trimmed NURBS surfaces to untrimmed subdivision surfaces with Bézier edge conditions. We take a NURBS surface and its trimming curves as input, from this we automatically compute a base mesh, the limit surface of which fits the trimmed NURBS surface to a specified tolerance. We first construct the topology of the base mesh by performing a cross-field based decomposition in parameter space. The number and positions of extraordinary vertices required to represent the trimmed shape can be automatically identified by smoothing a cross field bounded by the parametric trimming curves. After the topology construction, the control point positions in the base mesh are calculated based on the limit stencils of the subdivision scheme and constraints to achieve tangential continuity across the boundary. Our method provides the user with either an editable base mesh or a fine mesh whose limit surface approximates the input within a certain tolerance. By integrating the trimming curve as part of the desired limit surface boundary, our conversion can produce gap-free models. Moreover, since we use tangential continuity across the boundary between adjacent surfaces as constraints, the converted surfaces join with G1 continuity. © 2014 The Authors.EPSRC, Chinese Government (PhD studentship) and Cambridge Trust

    AlSub: Fully Parallel and Modular Subdivision

    Full text link
    In recent years, mesh subdivision---the process of forging smooth free-form surfaces from coarse polygonal meshes---has become an indispensable production instrument. Although subdivision performance is crucial during simulation, animation and rendering, state-of-the-art approaches still rely on serial implementations for complex parts of the subdivision process. Therefore, they often fail to harness the power of modern parallel devices, like the graphics processing unit (GPU), for large parts of the algorithm and must resort to time-consuming serial preprocessing. In this paper, we show that a complete parallelization of the subdivision process for modern architectures is possible. Building on sparse matrix linear algebra, we show how to structure the complete subdivision process into a sequence of algebra operations. By restructuring and grouping these operations, we adapt the process for different use cases, such as regular subdivision of dynamic meshes, uniform subdivision for immutable topology, and feature-adaptive subdivision for efficient rendering of animated models. As the same machinery is used for all use cases, identical subdivision results are achieved in all parts of the production pipeline. As a second contribution, we show how these linear algebra formulations can effectively be translated into efficient GPU kernels. Applying our strategies to 3\sqrt{3}, Loop and Catmull-Clark subdivision shows significant speedups of our approach compared to state-of-the-art solutions, while we completely avoid serial preprocessing.Comment: Changed structure Added content Improved description

    Flexible G1 Interpolation of Quad Meshes

    Get PDF
    International audienceTransforming an arbitrary mesh into a smooth G1 surface has been the subject of intensive research works. To get a visual pleasing shape without any imperfection even in the presence of extraordinary mesh vertices is still a challenging problem in particular when interpolation of the mesh vertices is required. We present a new local method, which produces visually smooth shapes while solving the interpolation problem. It consists of combining low degree biquartic BĂ©zier patches with minimum number of pieces per mesh face, assembled together with G1-continuity. All surface control points are given explicitly. The construction is local and free of zero-twists. We further show that within this economical class of surfaces it is however possible to derive a sufficient number of meaningful degrees of freedom so that standard optimization techniques result in high quality surfaces

    A multisided C-2 B-spline patch over extraordinary vertices in quadrilateral meshes

    Get PDF
    We propose a generalised B-spline construction that extends uniform bicubic B-splines to multisided regions spanned over extraordinary vertices in quadrilateral meshes. We show how the structure of the generalised Bezier patch introduced by Varady et al. can be adjusted to work with B-spline basis functions. We create ribbon surfaces based on B-splines using special basis functions. The resulting multisided surfaces are C-2 continuous internally and connect with G(2) continuity to adjacent regular and other multisided B-splines patches. We visually assess the quality of these surfaces and compare them to Catmull-Clark limit surfaces on several challenging geometrical configurations. (C) 2020 The Author(s). Published by Elsevier Ltd
    • …
    corecore