34,259 research outputs found

    Belief Tree Search for Active Object Recognition

    Full text link
    Active Object Recognition (AOR) has been approached as an unsupervised learning problem, in which optimal trajectories for object inspection are not known and are to be discovered by reducing label uncertainty measures or training with reinforcement learning. Such approaches have no guarantees of the quality of their solution. In this paper, we treat AOR as a Partially Observable Markov Decision Process (POMDP) and find near-optimal policies on training data using Belief Tree Search (BTS) on the corresponding belief Markov Decision Process (MDP). AOR then reduces to the problem of knowledge transfer from near-optimal policies on training set to the test set. We train a Long Short Term Memory (LSTM) network to predict the best next action on the training set rollouts. We sho that the proposed AOR method generalizes well to novel views of familiar objects and also to novel objects. We compare this supervised scheme against guided policy search, and find that the LSTM network reaches higher recognition accuracy compared to the guided policy method. We further look into optimizing the observation function to increase the total collected reward of optimal policy. In AOR, the observation function is known only approximately. We propose a gradient-based method update to this approximate observation function to increase the total reward of any policy. We show that by optimizing the observation function and retraining the supervised LSTM network, the AOR performance on the test set improves significantly.Comment: IROS 201

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem

    Monte Carlo Bayesian Reinforcement Learning

    Full text link
    Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in a model and represents uncertainty in model parameters by maintaining a probability distribution over them. This paper presents Monte Carlo BRL (MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a finite set of hypotheses for the model parameter values and forms a discrete partially observable Markov decision process (POMDP) whose state space is a cross product of the state space for the reinforcement learning task and the sampled model parameter space. The POMDP does not require conjugate distributions for belief representation, as earlier works do, and can be solved relatively easily with point-based approximation algorithms. MC-BRL naturally handles both fully and partially observable worlds. Theoretical and experimental results show that the discrete POMDP approximates the underlying BRL task well with guaranteed performance.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Performance Guarantees for Homomorphisms Beyond Markov Decision Processes

    Full text link
    Most real-world problems have huge state and/or action spaces. Therefore, a naive application of existing tabular solution methods is not tractable on such problems. Nonetheless, these solution methods are quite useful if an agent has access to a relatively small state-action space homomorphism of the true environment and near-optimal performance is guaranteed by the map. A plethora of research is focused on the case when the homomorphism is a Markovian representation of the underlying process. However, we show that near-optimal performance is sometimes guaranteed even if the homomorphism is non-Markovian. Moreover, we can aggregate significantly more states by lifting the Markovian requirement without compromising on performance. In this work, we expand Extreme State Aggregation (ESA) framework to joint state-action aggregations. We also lift the policy uniformity condition for aggregation in ESA that allows even coarser modeling of the true environment
    corecore