8 research outputs found

    Iterative decoding for error resilient wireless data transmission

    Get PDF
    Both turbo codes and LDPC codes form two new classes of codes that offer energy efficiencies close to theoretical limit predicted by Claude Shannon. The features of turbo codes include parallel code catenation, recursive convolutional encoders, punctured convolutional codes and an associated decoding algorithm. The features of LDPC codes include code construction, encoding algorithm, and an associated decoding algorithm. This dissertation specifically describes the process of encoding and decoding for both turbo and LDPC codes and demonstrates the performance comparison between theses two codes in terms of some performance factors. In addition, a more general discussion of iterative decoding is presented. One significant contribution of this dissertation is a study of some major performance factors that intensely contribute in the performance of both turbo codes and LDPC codes. These include Bit Error Rate, latency, code rate and computational resources. Simulation results show the performance of turbo codes and LDPC codes under different performance factors

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Implementação de códigos LDPC em OFDM e SC-FDE

    Get PDF
    Os desenvolvimentos dos sistemas de comunicação sem fios apontam para transmissĂ”es de alta velocidade e alta qualidade de serviço com um uso eficiente de energia. EficiĂȘncia espectral pode ser obtida por modulaçÔes multinĂ­vel, enquanto que melhorias na eficiĂȘncia de potĂȘncia podem ser proporcionadas pelo uso de cĂłdigos corretores de erros. Os cĂłdigos Low-Density Parity-Check (LDPC), devido ao seu desempenho prĂłximo do limite de Shannon e baixa complexidade na implementação e descodificação sĂŁo apropriados para futuros sistemas de comunicaçÔes sem fios. Por outro lado, o uso de modulaçÔes multinĂ­vel acarreta limitaçÔes na amplificação. Contudo, uma amplificação eficiente pode ser assegurada por estruturas de transmissĂŁo onde as modulaçÔes multinĂ­vel sĂŁo decompostas em submodulaçÔes com envolvente constante que podem ser amplificadas por amplificadores nĂŁo lineares a operar na zona de saturação. Neste tipo de estruturas surgem desvios de fase e ganho, produzindo distorçÔes na constelação resultante da soma de todos os sinais amplificados. O trabalho foca-se no uso dos cĂłdigos LDPC em esquemas multiportadora e monoportadora, com especial ĂȘnfase na performance de uma equalização iterativa implementada no domĂ­nio da frequĂȘncia por um Iterative Block-Decision Feedback Equalizer (IB-DFE). SĂŁo analisados aspectos como o impacto do nĂșmero de iteraçÔes no processo de descodificação dentro das iteraçÔes do processo de equalização. Os cĂłdigos LDPC tambĂ©m serĂŁo utilizados para compensar os desvios de fase em recetores iterativos para sistemas baseados em transmissores com vĂĄrios ramos de amplificação. É feito um estudo sobre o modo como estes cĂłdigos podem aumentar a tolerĂąncia a erros de fase que incluĂ­ uma anĂĄlise da complexidade e um algoritmo para estimação dos desequilĂ­brios de fase

    Channel coding for highly efficient transmission in wireless local area network

    Get PDF
    Seit ihrer Wiederentdeckung haben die Low Density Parity Check (LDPC) Codes ein hohes Interesse erfahren, da sie mit niedrigem Aufwand fĂŒr die Dekodierung fast die KanalkapazitĂ€t erreichen. Daher sind sie ein vielversprechendes Kanalcodierungsschema fĂŒr zukĂŒnftige drahtlose Anwendungen. Sie weisen allerdings noch den Nachteil eines hohen Enkodierungsaufwandes auf. Die Einwicklung eines mit geringem Aufwand implementierbaren LDPC Codes mit guten Leistungen stellt noch eine große Herausforderung dar. Die Nutzbarkeit der potenziellen Eigenschaften von LDPC-Codes im Bezug auf die technischen Randbedingungen gerade bei drahtlosen lokalen Netzwerken (Wireess Local Area Network - WLAN) wirft dabei besonders interessante Fragestellungen auf. Die vorliegende Dissertation konzentriert sich auf drei große Themen bezĂŒglich der Erforschung von LDPC Codes, nĂ€mlich die Charakterisierung des Codes mittels Umfangsmaßverteilung (Girth Degree Distribution), den niedrigen Enkodierungsaufwand mittels strukturierter Codekonstruktion sowie die verbesserte Decodierungskonvergenz mittels eines Zwei-Phasen Dekodierungsverfahrens. Im ersten Teil der Dissertation wird ein neues Konzept zur Beurteilung von Codes eingefĂŒhrt. Es basiert auf der Umfangsmaßverteilung. Dieses Konzept kombiniert die Ideen des klassischen Konzeptes - basierend auf dem Umfang (Girth) - mit denen des Knotenmaßes (Node Degree) und wird zur Charakterisierung und zur AbschĂ€tzung der LeistungsfĂ€higkeit des Codes eingesetzt. Zur Erkennung und Berechnung des Umfangs wird ein einfacher, baumbasierter Suchalgorithmus eingefĂŒhrt. Dieses Konzept ermöglicht eine effizientere LeistungsabschĂ€tzung als das der alleinigen Verwendung des Umfangs. Es wird gezeigt, dass das Umfangsmaß bei der Ermittlung der Leistung des Codes eine wesentlich grĂ¶ĂŸere Rolle spielt als der Umfang. Im Rahmen dieser Untersuchungen fĂ€llt als weiteres Ergebnis an, dass die Existenz von kurzen Schleifen der LĂ€nge 4 die LeistungsfĂ€higkeit des Codes nicht beeintrĂ€chtigt. Der zweite Teil der Dissertation beschĂ€ftigt sich mit einem einfachen Verfahren fĂŒr die Konstruktion einer Gruppe von LDPC Codes, die bei einem relativ niedrigen Enkodierungsaufwand dennoch eine gute Leistung aufweist. Die Kombination einer Treppestruktur in Verbindung mit Permutationsmatrizen fĂŒhrt zu einer sehr einfachen Implementierung, ohne dass ein erheblicher Leistungsverlust auftritt. Der resultierende Enkodierer kann ausschließlich mit einer sehr einfachen Schaltung aus Schieberegistern implementiert werden. Die LeistungsfĂ€higkeit des entstehenden Codes ist mit der des unregelmĂ€ĂŸigen MacKay-Codes vergleichbar. In kurzer KodelĂ€nge ĂŒbertreffen sie sogar einige bekannte strukturierte Codes. Allerdings sind die vorgeschlagenen Codes suboptimal im Vergleich mit den optionalen LDPC Codes fĂŒr WLAN, sofern niedrige Coderaten betrachtet werden. Sie erweisen sich aber als ebenbĂŒrtig bei höheren Coderaten. Diese LeistungsfĂ€higkeit wird von den hier vorgeschlagenen Codes mit relativ niedrigem Enkodierungsaufwand erreicht. Letztendlich wird im dritten Teil der Dissertation ist ein Verfahren zur Steigerung der Decodierungskonvergenz beim Einsatz von LDPC Codes in Kombination mit Modulationsverfahren hoher Wertigkeit vorgestellt. Das Zwei-Phasen Dekodierverfahren wird zur Verbesserung der Bit-ZuverlĂ€ssigkeit im Dekodierungsprozess eingefĂŒhrt. Dieses bewirkt eine Reduktion der benötigten Dekodierungsschritte ohne Leistungsverlust. Erreicht wird dies durch die Verwendung der Ergebnisse einer ersten Dekodierungsphase als erneute Eingabe fĂŒr eine zweite Dekodierungsphase. Die optimale Kombination der durchzufĂŒhrenden Iterationen beider Dekodierungsphasen kann die Anzahl der insgesamt benötigten Iteration im Durchschnitt reduzieren. Dieses Verfahren zeigt seine Wirksamkeit im Wasserfallbereich des Signal-Rausch-VerhĂ€ltnisses. -Since their rediscovery, Low Density Parity Check (LDPC) codes sparked high interests due to their capacity-approaching performance achieved through their low decoding complexity. Therefore, they are considered as promising scheme for channel coding in future wireless application. However, they still constitute disadvantage in their high encoding complexity. The research on practical LDPC codes with good performance is quite challenging. In this direction their potential characteristics are explored with respect to the technical requirement of wireless local area network (WLAN). This thesis is focused on three topics, which correspond to three major issues in the research of LDPC codes: code characterization with girth degree distribution, low encoding complexity with structured construction, and higher decoding convergence with two-stage decoding scheme. In the first part of the thesis, a novel concept of girth degree is introduced. This concept combines the idea of the classical concept of girth with node degree. The proposed concept is used to characterize the codes and measure their performance. A simple treebased search algorithm is applied to detect and count the girth degree. The proposed concept is more effective than the classical concept of girth in measuring the performance. It shows that the girth degree plays more significant role than the girth it self, in determining the code performance. Furthermore, the existence of short-four-cycles to some extent is not harmful to degrade the code performances. The second part deals with a simple method for constructing a class of LDPC codes, which pose relative low encoding complexity but show good performance. The combination of the stair structure and the permutation matrices, which are constructed based on the proposed method, yields very simple implementation in encoding process within encoder. The resulting encoder can be implemented using relatively simple shiftregister circuits. Their performance is comparable with that of irregular MacKay codes. In short code length, they outperform some well-established structured codes. The performance of the proposed codes is comparable with the optional LDPC codes for WLAN at higher code rates. However, the proposed codes are relatively suboptimal at lower code rate. Such performance is achieved by the proposed codes in lower encoding complexity In the third part, a method for enhancing the decoding convergence for high coded modulation system is introduced. The two-stage decoding scheme is proposed to improve bit reliabilities in decoding process leading to reduced decoding iteration without performance losses. This is achieved by making use of the output from the first decoding stage as the additional input for the second decoding stage. The optimal combination of the maximal iteration of both decoding stages is capable of reducing the average iteration. This method shows its efficiency at the waterfall region of signal-to-noise-ratio

    On Lowering the Error Floor of Short-to-Medium Block Length Irregular Low Density Parity Check Codes

    Get PDF
    Edited version embargoed until 22.03.2019 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 22.03.2018 by SE, Doctoral CollegeGallager proposed and developed low density parity check (LDPC) codes in the early 1960s. LDPC codes were rediscovered in the early 1990s and shown to be capacity approaching over the additive white Gaussian noise (AWGN) channel. Subsequently, density evolution (DE) optimized symbol node degree distributions were used to significantly improve the decoding performance of short to medium length irregular LDPC codes. Currently, the short to medium length LDPC codes with the lowest error floor are DE optimized irregular LDPC codes constructed using progressive edge growth (PEG) algorithm modifications which are designed to increase the approximate cycle extrinsic message degrees (ACE) in the LDPC code graphs constructed. The aim of the present work is to find efficient means to improve on the error floor performance published for short to medium length irregular LDPC codes over AWGN channels in the literature. An efficient algorithm for determining the girth and ACE distributions in short to medium length LDPC code Tanner graphs has been proposed. A cyclic PEG (CPEG) algorithm which uses an edge connections sequence that results in LDPC codes with improved girth and ACE distributions is presented. LDPC codes with DE optimized/’good’ degree distributions which have larger minimum distances and stopping distances than previously published for LDPC codes of similar length and rate have been found. It is shown that increasing the minimum distance of LDPC codes lowers their error floor performance over AWGN channels; however, there are threshold minimum distances values above which there is no further lowering of the error floor performance. A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm is presented; the algorithm controls the minimum local girth (global girth) connected in the Tanner graphs of LDPC codes constructed by forfeiting some edge connections. A technique for constructing optimal low correlated edge density (OED) LDPC codes based on modified DE optimized symbol node degree distributions and the MLG (ES) PEG algorithm modification is presented. OED rate-Âœ (n, k)=(512, 256) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. Similarly, consequent to an improved symbol node degree distribution, rate Âœ (n, k)=(1024, 512) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. An improved BP/SPA (IBP/SPA) decoder, obtained by making two simple modifications to the standard BP/SPA decoder, has been shown to result in an unprecedented generalized improvement in the performance of short to medium length irregular LDPC codes under iterative message passing decoding. The superiority of the Slepian Wolf distributed source coding model over other distributed source coding models based on LDPC codes has been shown

    Novel LDPC coding and decoding strategies: design, analysis, and algorithms

    Get PDF
    In this digital era, modern communication systems play an essential part in nearly every aspect of life, with examples ranging from mobile networks and satellite communications to Internet and data transfer. Unfortunately, all communication systems in a practical setting are noisy, which indicates that we can either improve the physical characteristics of the channel or find a possible systematical solution, i.e. error control coding. The history of error control coding dates back to 1948 when Claude Shannon published his celebrated work “A Mathematical Theory of Communication”, which built a framework for channel coding, source coding and information theory. For the first time, we saw evidence for the existence of channel codes, which enable reliable communication as long as the information rate of the code does not surpass the so-called channel capacity. Nevertheless, in the following 60 years none of the codes have been proven closely to approach the theoretical bound until the arrival of turbo codes and the renaissance of LDPC codes. As a strong contender of turbo codes, the advantages of LDPC codes include parallel implementation of decoding algorithms and, more crucially, graphical construction of codes. However, there are also some drawbacks to LDPC codes, e.g. significant performance degradation due to the presence of short cycles or very high decoding latency. In this thesis, we will focus on the practical realisation of finite-length LDPC codes and devise algorithms to tackle those issues. Firstly, rate-compatible (RC) LDPC codes with short/moderate block lengths are investigated on the basis of optimising the graphical structure of the tanner graph (TG), in order to achieve a variety of code rates (0.1 < R < 0.9) by only using a single encoder-decoder pair. As is widely recognised in the literature, the presence of short cycles considerably reduces the overall performance of LDPC codes which significantly limits their application in communication systems. To reduce the impact of short cycles effectively for different code rates, algorithms for counting short cycles and a graph-related metric called Extrinsic Message Degree (EMD) are applied with the development of the proposed puncturing and extension techniques. A complete set of simulations are carried out to demonstrate that the proposed RC designs can largely minimise the performance loss caused by puncturing or extension. Secondly, at the decoding end, we study novel decoding strategies which compensate for the negative effect of short cycles by reweighting part of the extrinsic messages exchanged between the nodes of a TG. The proposed reweighted belief propagation (BP) algorithms aim to implement efficient decoding, i.e. accurate signal reconstruction and low decoding latency, for LDPC codes via various design methods. A variable factor appearance probability belief propagation (VFAP-BP) algorithm is proposed along with an improved version called a locally-optimized reweighted (LOW)-BP algorithm, both of which can be employed to enhance decoding performance significantly for regular and irregular LDPC codes. More importantly, the optimisation of reweighting parameters only takes place in an offline stage so that no additional computational complexity is required during the real-time decoding process. Lastly, two iterative detection and decoding (IDD) receivers are presented for multiple-input multiple-output (MIMO) systems operating in a spatial multiplexing configuration. QR decomposition (QRD)-type IDD receivers utilise the proposed multiple-feedback (MF)-QRD or variable-M (VM)-QRD detection algorithm with a standard BP decoding algorithm, while knowledge-aided (KA)-type receivers are equipped with a simple soft parallel interference cancellation (PIC) detector and the proposed reweighted BP decoders. In the uncoded scenario, the proposed MF-QRD and VM-QRD algorithms are shown to approach optimal performance, yet require a reduced computational complexity. In the LDPC-coded scenario, simulation results have illustrated that the proposed QRD-type IDD receivers can offer near-optimal performance after a small number of detection/decoding iterations and the proposed KA-type IDD receivers significantly outperform receivers using alternative decoding algorithms, while requiring similar decoding complexity
    corecore