9,795 research outputs found

    Generalized dynamic engine simulation techniques for the digital computer

    Get PDF
    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed

    General review of the MOSTAS computer code for wind turbines

    Get PDF
    The MOSTAS computer code for wind turbine analysis is reviewed, and techniques and methods used in its analyses are described. Impressions of its strengths and weakness, and recommendations for its application, modification, and further development are made. Basic techniques used in wind turbine stability and response analyses for systems with constant and periodic coefficients are reviewed

    A bibliography /with abstracts/ on gas-lubricated bearings Interim report

    Get PDF
    Gas lubricated bearings - annotated bibliograph

    Development of a contra-rotating tidal current turbine and analysis of performance

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Adaptive BDDC in Three Dimensions

    Full text link
    The adaptive BDDC method is extended to the selection of face constraints in three dimensions. A new implementation of the BDDC method is presented based on a global formulation without an explicit coarse problem, with massive parallelism provided by a multifrontal solver. Constraints are implemented by a projection and sparsity of the projected operator is preserved by a generalized change of variables. The effectiveness of the method is illustrated on several engineering problems.Comment: 28 pages, 9 figures, 9 table

    Identification of dynamic characteristics of flexible rotors as dynamic inverse problem

    Get PDF
    The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses

    Load mitigation for wind turbines by a passive aeroelastic device

    Get PDF
    This paper conducts a preliminary investigation of a novel passive concept for the mitigation of loads on wind turbines. The device, which can be implemented as a flap or a pitching blade tip, moves passively in response to blade vibrations, opposing them, thereby yielding an attenuation of loads. In comparison to active load mitigation devices, such as active flaps, this solution has the advantage of not requiring sensors nor actuators, resulting in a particularly simple implementation, with potential benefits in manufacturing and maintenance costs, as well as in reliability and availability.The paper first describes the novel passive device, here implemented by means of a flap, highlighting its main characteristics. A proof of concept of the new idea is then given by a simulation study conducted with the combination of a sectional model of the flap and an aeroservoelastic multibody model of the rest of the machine. Results, obtained for a 10. MW wind turbine, indicate the ability of the passive flap in attenuating blade vibrations in a significant frequency range, which in turn yield a reduced fatigue damage to the structure without noticeable effects in terms of power production and ultimate loads

    Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods

    Get PDF
    This paper presents results of numerical computations for floating off-shore wind turbines using, as an example, a machine of 10-MW rated power. The aerodynamic loads on the rotor are computed using the Helicopter Multi-Block flow solver developed at the University of Liverpool. The method solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform are computed using the Smoothed Particle Hydrodynamics method, which is mesh-free and represents the water and floating structures by a set of discrete elements, referred to as particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the results are presented in this paper. The importance of coupling is assessed and the loosely coupled algorithm used is described in detail alongside the obtained results
    • …
    corecore