226,084 research outputs found

    A collocation method based on the Bernoulli operational matrix for solving highorder linear complex differential equations in a rectangular domain,”

    Get PDF
    This paper contributes a new matrix method for the solution of high-order linear complex differential equations with variable coefficients in rectangular domains under the considered initial conditions. On the basis of the presented approach, the matrix forms of the Bernoulli polynomials and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown Bernoulli coefficients are determined and thus the approximate solutions are obtained. Also, an error analysis based on the use of the Bernoulli polynomials is provided under several mild conditions. To illustrate the efficiency of our method, some numerical examples are given

    Order reduction methods for solving large-scale differential matrix Riccati equations

    Full text link
    We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    Symmetry, singularities and integrability in complex dynamics III: approximate symmetries and invariants

    Full text link
    The different natures of approximate symmetries and their corresponding first integrals/invariants are delineated in the contexts of both Lie symmetries of ordinary differential equations and Noether symmetries of the Action Integral. Particular note is taken of the effect of taking higher orders of the perturbation parameter. Approximate symmetries of approximate first integrals/invariants and the problems of calculating them using the Lie method are considered

    Double power series method for approximating cosmological perturbations

    Get PDF
    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a non-cosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on sub-horizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well known growing and decaying M\'esz\'aros solutions, these oscillating modes provide a complete set of sub-horizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.Comment: 22 pages, 10 figures, 2 tables. Mathematica notebook available from Github at https://github.com/AndrewWren/Double-power-series.gi

    Review of modern numerical methods for a simple vanilla option pricing problem

    Get PDF
    Option pricing is a very attractive issue of financial engineering and optimization. The problem of determining the fair price of an option arises from the assumptions made under a given financial market model. The increasing complexity of these market assumptions contributes to the popularity of the numerical treatment of option valuation. Therefore, the pricing and hedging of plain vanilla options under the Black–Scholes model usually serve as a bench-mark for the development of new numerical pricing approaches and methods designed for advanced option pricing models. The objective of the paper is to present and compare the methodological concepts for the valuation of simple vanilla options using the relatively modern numerical techniques in this issue which arise from the discontinuous Galerkin method, the wavelet approach and the fuzzy transform technique. A theoretical comparison is accompanied by an empirical study based on the numerical verification of simple vanilla option prices. The resulting numerical schemes represent a particularly effective option pricing tool that enables some features of options that are depend-ent on the discretization of the computational domain as well as the order of the polynomial approximation to be captured better
    corecore