19,860 research outputs found

    Are there graphs whose shortest path structure requires large edge weights?

    Full text link
    The aspect ratio of a weighted graph GG is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio. This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and \emph{reweight} its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are: - Every weighted DAG on nn nodes has a shortest-paths preserving graph of aspect ratio O(n)O(n). A simple lower bound shows that this is tight. - The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected nn-node graphs for which any shortest-paths preserving graph has aspect ratio 2Ω(n)2^{\Omega(n)}. We also consider the approximate version of this problem, where the goal is for shortest paths in HH to correspond to approximate shortest paths in GG. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in HH must also correspond to approximate shortest paths in GG, even DAGs require exponential aspect ratio

    (1 + )-Approximate shortest paths in dynamic streams

    Get PDF
    Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge that has been intensively studied. Currently existing solutions for this problem either build a sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline, or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a stretch-space tradeoff of 2−1 versus n1+1/, for an integer parameter . (In fact, existing solutions also incur an extra factor of 1 + in the stretch for weighted graphs, and an additional factor of logO(1) n in the space.) The only existing solution of the second type uses n1/2−O(1/) passes over the stream (for space O(n1+1/)), and applies only to unweighted graphs. In this paper we show that (1+)-approximate single-source shortest paths can be computed with ˜O (n1+1/) space using just constantly many passes in unweighted graphs, and polylogarithmically many passes in weighted graphs. Moreover, the same result applies for multi-source shortest paths, as long as the number of sources is O(n1/). We achieve these results by devising efficient dynamic streaming constructions of (1 + , )-spanners and hopsets. On our way to these results, we also devise a new dynamic streaming algorithm for the 1-sparse recovery problem. Even though our algorithm for this task is slightly inferior to the existing algorithms of [26, 11], we believe that it is of independent interest. 2012 ACM Subject Classification Theory of computation ! Streaming models; Theory of computation ! Streaming, sublinear and near linear time algorithms; Theory of computation ! Shortest paths; Theory of computation ! Sparsification and spanner

    Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

    Get PDF
    We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC\u2702, Bernstein STOC\u2713] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions

    Fast Routing Table Construction Using Small Messages

    Full text link
    We describe a distributed randomized algorithm computing approximate distances and routes that approximate shortest paths. Let n denote the number of nodes in the graph, and let HD denote the hop diameter of the graph, i.e., the diameter of the graph when all edges are considered to have unit weight. Given 0 < eps <= 1/2, our algorithm runs in weak-O(n^(1/2 + eps) + HD) communication rounds using messages of O(log n) bits and guarantees a stretch of O(eps^(-1) log eps^(-1)) with high probability. This is the first distributed algorithm approximating weighted shortest paths that uses small messages and runs in weak-o(n) time (in graphs where HD in weak-o(n)). The time complexity nearly matches the lower bounds of weak-Omega(sqrt(n) + HD) in the small-messages model that hold for stateless routing (where routing decisions do not depend on the traversed path) as well as approximation of the weigthed diameter. Our scheme replaces the original identifiers of the nodes by labels of size O(log eps^(-1) log n). We show that no algorithm that keeps the original identifiers and runs for weak-o(n) rounds can achieve a polylogarithmic approximation ratio. Variations of our techniques yield a number of fast distributed approximation algorithms solving related problems using small messages. Specifically, we present algorithms that run in weak-O(n^(1/2 + eps) + HD) rounds for a given 0 < eps <= 1/2, and solve, with high probability, the following problems: - O(eps^(-1))-approximation for the Generalized Steiner Forest (the running time in this case has an additive weak-O(t^(1 + 2eps)) term, where t is the number of terminals); - O(eps^(-2))-approximation of weighted distances, using node labels of size O(eps^(-1) log n) and weak-O(n^(eps)) bits of memory per node; - O(eps^(-1))-approximation of the weighted diameter; - O(eps^(-3))-approximate shortest paths using the labels 1,...,n.Comment: 40 pages, 2 figures, extended abstract submitted to STOC'1

    Brief announcement: (1+)-approximate shortest paths in dynamic streams

    Get PDF
    Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge that has been intensively studied. Currently existing solutions for this problem either build a sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline, or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a stretch-space tradeoff of 2k - 1 versus n1+1/k , for an integer parameter k. (In fact, existing solutions also incur an extra factor of 1+ in the stretch for weighted graphs, and an additional factor of logO(1) n in the space.) The only existing solution of the second type uses n1/2-O(1/k) passes over the stream (for space O(n1+1/k )), and applies only to unweighted graphs

    A Unified Approach for All Pairs Approximate Shortest Paths in Weighted Undirected Graphs

    Get PDF

    Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

    Get PDF
    In this paper we consider the decremental single-source shortest paths (SSSP) problem, where given a graph G and a source node s the goal is to maintain shortest distances between s and all other nodes in G under a sequence of online adversarial edge deletions. In their seminal work, Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs with only O(mn) total update time over all edge deletions. Their classic algorithm was the state of the art for the decremental SSSP problem for three decades, even when approximate shortest paths are allowed. The first improvement over the Even-Shiloach algorithm was given by Bernstein and Roditty [SODA 2011], who for the case of an unweighted and undirected graph presented a (1+epsilon)-approximate algorithm with constant query time and a total update time of O(n^{2+o(1)}). This work triggered a series of new results, culminating in a recent breakthrough of Henzinger, Krinninger and Nanongkai [FOCS 14], who presented a (1+epsilon)-approximate algorithm for undirected weighted graphs whose total update time is near linear: O(m^{1+o(1)} log(W)), where W is the ratio of the heaviest to the lightest edge weight in the graph. In this paper they posed as a major open problem the question of derandomizing their result. Until very recently, all known improvements over the Even-Shiloach algorithm were randomized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein and Chechik showed the first deterministic algorithm to go beyond O(mn) total update time: the algorithm is also (1+epsilon)-approximate, and has total update time tilde{O}(n^2). In SODA 2017, the same authors presented an algorithm with total update time tilde{O}(mn^{3/4}). However, both algorithms are restricted to undirected, unweighted graphs. We present the first deterministic algorithm for weighted undirected graphs to go beyond the O(mn) bound. The total update time is tilde{O}(n^2 log(W))

    Conditional Hardness for Sensitivity Problems

    Get PDF
    In recent years it has become popular to study dynamic problems in a sensitivity setting: Instead of allowing for an arbitrary sequence of updates, the sensitivity model only allows to apply batch updates of small size to the original input data. The sensitivity model is particularly appealing since recent strong conditional lower bounds ruled out fast algorithms for many dynamic problems, such as shortest paths, reachability, or subgraph connectivity. In this paper we prove conditional lower bounds for these and additional problems in a sensitivity setting. For example, we show that under the Boolean Matrix Multiplication (BMM) conjecture combinatorial algorithms cannot compute the (4/3-varepsilon)-approximate diameter of an undirected unweighted dense graph with truly subcubic preprocessing time and truly subquadratic update/query time. This result is surprising since in the static setting it is not clear whether a reduction from BMM to diameter is possible. We further show under the BMM conjecture that many problems, such as reachability or approximate shortest paths, cannot be solved faster than by recomputation from scratch even after only one or two edge insertions. We extend our reduction from BMM to Diameter to give a reduction from All Pairs Shortest Paths to Diameter under one deletion in weighted graphs. This is intriguing, as in the static setting it is a big open problem whether Diameter is as hard as APSP. We further get a nearly tight lower bound for shortest paths after two edge deletions based on the APSP conjecture. We give more lower bounds under the Strong Exponential Time Hypothesis. Many of our lower bounds also hold for static oracle data structures where no sensitivity is required. Finally, we give the first algorithm for the (1+varepsilon)-approximate radius, diameter, and eccentricity problems in directed or undirected unweighted graphs in case of single edges failures. The algorithm has a truly subcubic running time for graphs with a truly subquadratic number of edges; it is tight w.r.t. the conditional lower bounds we obtain

    Shortest Paths in Geometric Intersection Graphs

    Get PDF
    This thesis studies shortest paths in geometric intersection graphs, which can model, among others, ad-hoc communication and transportation networks. First, we consider two classical problems in the field of algorithms, namely Single-Source Shortest Paths (SSSP) and All-Pairs Shortest Paths (APSP). In SSSP we want to compute the shortest paths from one vertex of a graph to all other vertices, while in APSP we aim to find the shortest path between every pair of vertices. Although there is a vast literature for these problems in many graph classes, the case of geometric intersection graphs has been only partially addressed. In unweighted unit-disk graphs, we show that we can solve SSSP in linear time, after presorting the disk centers with respect to their coordinates. Furthermore, we give the first (slightly) subquadratic-time APSP algorithm by using our new SSSP result, bit tricks, and a shifted-grid-based decomposition technique. In unweighted, undirected geometric intersection graphs, we present a simple and general technique that reduces APSP to static, offline intersection detection. Consequently, we give fast APSP algorithms for intersection graphs of arbitrary disks, axis-aligned line segments, arbitrary line segments, d-dimensional axis-aligned boxes, and d-dimensional axis-aligned unit hypercubes. We also provide a near-linear-time SSSP algorithm for intersection graphs of axis-aligned line segments by a reduction to dynamic orthogonal point location. Then, we study two problems that have received considerable attention lately. The first is that of computing the diameter of a graph, i.e., the longest shortest-path distance between any two vertices. In the second, we want to preprocess a graph into a data structure, called distance oracle, such that the shortest path (or its length) between any two query vertices can be found quickly. Since these problems are often too costly to solve exactly, we study their approximate versions. Following a long line of research, we employ Voronoi diagrams to compute a (1+epsilon)-approximation of the diameter of an undirected, non-negatively-weighted planar graph in time near linear in the input size and polynomial in 1/epsilon. The previously best solution had exponential dependency on the latter. Using similar techniques, we can also construct the first (1+epsilon)-approximate distance oracles with similar preprocessing time and space and only O(log(1/\epsilon)) query time. In weighted unit-disk graphs, we present the first near-linear-time (1+epsilon)-approximation algorithm for the diameter and for other related problems, such as the radius and the bichromatic closest pair. To do so, we combine techniques from computational geometry and planar graphs, namely well-separated pair decompositions and shortest-path separators. We also show how to extend our approach to obtain O(1)-query-time (1+epsilon)-approximate distance oracles with near linear preprocessing time and space. Then, we apply these oracles, along with additional ideas, to build a data structure for the (1+epsilon)-approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem in truly subcubic time
    • …
    corecore