40,027 research outputs found

    k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)

    Get PDF
    Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier -- classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance because issues of poor run-time performance is not such a problem these days with the computational power that is available. This paper presents an overview of techniques for Nearest Neighbour classification focusing on; mechanisms for assessing similarity (distance), computational issues in identifying nearest neighbours and mechanisms for reducing the dimension of the data. This paper is the second edition of a paper previously published as a technical report. Sections on similarity measures for time-series, retrieval speed-up and intrinsic dimensionality have been added. An Appendix is included providing access to Python code for the key methods.Comment: 22 pages, 15 figures: An updated edition of an older tutorial on kN

    The analog data assimilation

    Get PDF
    In light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings.Fil: Lguensat, Redouane. Université Bretagne Loire; FranciaFil: Tandeo, Pierre. Université Bretagne Loire; FranciaFil: Ailliot, Pierre. University of Western Brittany. Laboratoire de Mathématiques de Bretagne Atlantique; FranciaFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Fablet, Ronan. Université Bretagne Loire; Franci

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Real-time Planning as Decision-making Under Uncertainty

    Get PDF
    In real-time planning, an agent must select the next action to take within a fixed time bound. Many popular real-time heuristic search methods approach this by expanding nodes using time-limited A* and selecting the action leading toward the frontier node with the lowest f value. In this thesis, we reconsider real-time planning as a problem of decision-making under uncertainty. We treat heuristic values as uncertain evidence and we explore several backup methods for aggregating this evidence. We then propose a novel lookahead strategy that expands nodes to minimize risk, the expected regret in case a non-optimal action is chosen. We evaluate these methods in a simple synthetic benchmark and the sliding tile puzzle and find that they outperform previous methods. This work illustrates how uncertainty can arise even when solving deterministic planning problems, due to the inherent ignorance of time-limited search algorithms about those portions of the state space that they have not computed, and how an agent can benefit from explicitly meta-reasoning about this uncertainty
    corecore