77 research outputs found

    Leveraging deep reinforcement learning in the smart grid environment

    Full text link
    L’apprentissage statistique moderne démontre des résultats impressionnants, où les or- dinateurs viennent à atteindre ou même à excéder les standards humains dans certaines applications telles que la vision par ordinateur ou les jeux de stratégie. Pourtant, malgré ces avancées, force est de constater que les applications fiables en déploiement en sont encore à leur état embryonnaire en comparaison aux opportunités qu’elles pourraient apporter. C’est dans cette perspective, avec une emphase mise sur la théorie de décision séquentielle et sur les recherches récentes en apprentissage automatique, que nous démontrons l’applica- tion efficace de ces méthodes sur des cas liés au réseau électrique et à l’optimisation de ses acteurs. Nous considérons ainsi des instances impliquant des unités d’emmagasinement éner- gétique ou des voitures électriques, jusqu’aux contrôles thermiques des bâtiments intelligents. Nous concluons finalement en introduisant une nouvelle approche hybride qui combine les performances modernes de l’apprentissage profond et de l’apprentissage par renforcement au cadre d’application éprouvé de la recherche opérationnelle classique, dans le but de faciliter l’intégration de nouvelles méthodes d’apprentissage statistique sur différentes applications concrètes.While modern statistical learning is achieving impressive results, as computers start exceeding human baselines in some applications like computer vision, or even beating pro- fessional human players at strategy games without any prior knowledge, reliable deployed applications are still in their infancy compared to what these new opportunities could fathom. In this perspective, with a keen focus on sequential decision theory and recent statistical learning research, we demonstrate efficient application of such methods on instances involving the energy grid and the optimization of its actors, from energy storage and electric cars to smart buildings and thermal controls. We conclude by introducing a new hybrid approach combining the modern performance of deep learning and reinforcement learning with the proven application framework of operations research, in the objective of facilitating seamlessly the integration of new statistical learning-oriented methodologies in concrete applications

    Active Inference in Simulated Cortical Circuits

    Get PDF

    Reinforcement learning for sequential decision-making: a data driven approach for finance

    Get PDF
    This work presents a variety of reinforcement learning applications to the domain of nance. It composes of two-part. The rst one represents a technical overview of the basic concepts in machine learning, which are required to understand and work with the reinforcement learning paradigm and are shared among the domains of applications. Chapter 1 outlines the fundamental principle of machine learning reasoning before introducing the neural network model as a central component of every algorithm presented in this work. Chapter 2 introduces the idea of reinforcement learning from its roots, focusing on the mathematical formalism generally employed in every application. We focus on integrating the reinforcement learning framework with the neural network, and we explain their critical role in the eld's development. After the technical part, we present our original contribution, articulated in three di erent essays. The narrative line follows the idea of introducing the use of varying reinforcement learning algorithms through a trading application (Brini and Tantari, 2021) in Chapter 3. Then in Chapter 4 we focus on one of the presented reinforcement learning algorithms and aim at improving its performance and scalability in solving the trading problem by leveraging prior knowledge of the setting. In Chapter 5 of the second part, we use the same reinforcement learning algorithm to solve the problem of exchanging liquidity in a system of banks that can borrow and lend money, highlighting the exibility and the e ectiveness of the reinforcement learning paradigm in the broad nancial domain. We conclude with some remarks and ideas for further research in reinforcement learning applied to nance

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Discovering logical knowledge in non-symbolic domains

    Get PDF
    Deep learning and symbolic artificial intelligence remain the two main paradigms in Artificial Intelligence (AI), each presenting their own strengths and weaknesses. Artificial agents should integrate both of these aspects of AI in order to show general intelligence and solve complex problems in real-world scenarios; similarly to how humans use both the analytical left side and the intuitive right side of their brain in their lives. However, one of the main obstacles hindering this integration is the Symbol Grounding Problem [144], which is the capacity to map physical world observations to a set of symbols. In this thesis, we combine symbolic reasoning and deep learning in order to better represent and reason with abstract knowledge. In particular, we focus on solving non-symbolic-state Reinforcement Learning environments using a symbolic logical domain. We consider different configurations: (i) unknown knowledge of both the symbol grounding function and the symbolic logical domain, (ii) unknown knowledge of the symbol grounding function and prior knowledge of the domain, (iii) imperfect knowledge of the symbols grounding function and unknown knowledge of the domain. We develop algorithms and neural network architectures that are general enough to be applied to different kinds of environments, which we test on both continuous-state control problems and image-based environments. Specifically, we develop two kinds of architectures: one for Markovian RL tasks and one for non-Markovian RL domains. The first is based on model-based RL and representation learning, and is inspired by the substantial prior work in state abstraction for RL [115]. The second is mainly based on recurrent neural networks and continuous relaxations of temporal logic domains. In particular, the first approach extracts a symbolic STRIPS-like abstraction for control problems. For the second approach, we explore connections between recurrent neural networks and finite state machines, and we define Visual Reward Machines, an extension to non-symbolic domains of Reward Machines [27], which are a popular approach to non-Markovian RL tasks

    Modern applications of machine learning in quantum sciences

    Get PDF
    In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning
    • …
    corecore