8,230 research outputs found

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features

    Full text link
    One-class support vector machine (OC-SVM) for a long time has been one of the most effective anomaly detection methods and extensively adopted in both research as well as industrial applications. The biggest issue for OC-SVM is yet the capability to operate with large and high-dimensional datasets due to optimization complexity. Those problems might be mitigated via dimensionality reduction techniques such as manifold learning or autoencoder. However, previous work often treats representation learning and anomaly prediction separately. In this paper, we propose autoencoder based one-class support vector machine (AE-1SVM) that brings OC-SVM, with the aid of random Fourier features to approximate the radial basis kernel, into deep learning context by combining it with a representation learning architecture and jointly exploit stochastic gradient descent to obtain end-to-end training. Interestingly, this also opens up the possible use of gradient-based attribution methods to explain the decision making for anomaly detection, which has ever been challenging as a result of the implicit mappings between the input space and the kernel space. To the best of our knowledge, this is the first work to study the interpretability of deep learning in anomaly detection. We evaluate our method on a wide range of unsupervised anomaly detection tasks in which our end-to-end training architecture achieves a performance significantly better than the previous work using separate training.Comment: Accepted at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 201

    Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map

    Get PDF
    Uncertainty is widely spread in real-world data. Uncertain data-in computer science-is typically found in the area of sensor networks where the sensors sense the environment with certain error. Mining and visualizing uncertain data is one of the new challenges that face uncertain databases. This paper presents a new intelligent hybrid algorithm that applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain objects. The algorithm is tested in some benchmark problems and the uncertain traffics in Named Data Networking (NDN). Experimental results indicate that the proposed algorithm is precise and effective in terms of the applied performance criteria.Peer ReviewedPostprint (published version

    A Concurrent Fuzzy-Neural Network Approach for Decision Support Systems

    Full text link
    Decision-making is a process of choosing among alternative courses of action for solving complicated problems where multi-criteria objectives are involved. The past few years have witnessed a growing recognition of Soft Computing technologies that underlie the conception, design and utilization of intelligent systems. Several works have been done where engineers and scientists have applied intelligent techniques and heuristics to obtain optimal decisions from imprecise information. In this paper, we present a concurrent fuzzy-neural network approach combining unsupervised and supervised learning techniques to develop the Tactical Air Combat Decision Support System (TACDSS). Experiment results clearly demonstrate the efficiency of the proposed technique
    corecore