841 research outputs found

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page

    Notes on the Discontinuous Galerkin methods for the numerical simulation of hyperbolic equations 1 General Context 1.1 Bibliography

    Full text link
    The roots of Discontinuous Galerkin (DG) methods is usually attributed to Reed and Hills in a paper published in 1973 on the numerical approximation of the neutron transport equation [18]. In fact, the adventure really started with a rather thoroughfull series of five papers by Cockburn and Shu in the late 80's [7, 5, 9, 6, 8]. Then, the fame of the method, which could be seen as a compromise between Finite Elements (the center of the method being a weak formulation) and Finite Volumes (the basis functions are defined cell-wise, the cells being the elements of the primal mesh) increased and slowly investigated successfully all the domains of Partial Differential Equations numerical integration. In particular, one can cite the ground papers for the common treatment of convection-diffusion equations [4, 3] or the treatment of pure elliptic equations [2, 17]. For more information on the history of Discontinuous Galerkin method, please refer to section 1.1 of [15]. Today, DG methods are widely used in all kind of manners and have applications in almost all fields of applied mathematics. (TODO: cite applications and structured/unstructured meshes, steady/unsteady, etc...). The methods is now mature enough to deserve entire text books, among which I cite a reference book on Nodal DG Methods by Henthaven and Warburton [15] with the ground basis of DG integration, numerical analysis of its linear behavior and generalization to multiple dimensions. Lately, since 2010, thanks to a ground work of Zhang and Shu [26, 27, 25, 28, 29], Discontinuous Galerkin methods are eventually able to combine high order accuracy and certain preservation of convex constraints, such as the positivity of a given quantity, for example. These new steps forward are very promising since it brings us very close to the "Ultimate Conservative Scheme", [23, 1]

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified

    Splitting and composition methods in the numerical integration of differential equations

    Get PDF
    We provide a comprehensive survey of splitting and composition methods for the numerical integration of ordinary differential equations (ODEs). Splitting methods constitute an appropriate choice when the vector field associated with the ODE can be decomposed into several pieces and each of them is integrable. This class of integrators are explicit, simple to implement and preserve structural properties of the system. In consequence, they are specially useful in geometric numerical integration. In addition, the numerical solution obtained by splitting schemes can be seen as the exact solution to a perturbed system of ODEs possessing the same geometric properties as the original system. This backward error interpretation has direct implications for the qualitative behavior of the numerical solution as well as for the error propagation along time. Closely connected with splitting integrators are composition methods. We analyze the order conditions required by a method to achieve a given order and summarize the different families of schemes one can find in the literature. Finally, we illustrate the main features of splitting and composition methods on several numerical examples arising from applications.Comment: Review paper; 56 pages, 6 figures, 8 table
    • …
    corecore