105,252 research outputs found

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    Verifiably Truthful Mechanisms

    Full text link
    It is typically expected that if a mechanism is truthful, then the agents would, indeed, truthfully report their private information. But why would an agent believe that the mechanism is truthful? We wish to design truthful mechanisms, whose truthfulness can be verified efficiently (in the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money for facility location

    Heterogeneous Facility Location without Money

    Get PDF
    The study of the facility location problem in the presence of self-interested agents has recently emerged as the benchmark problem in the research on mechanism design without money. In the setting studied in the literature so far, agents are single-parameter in that their type is a single number encoding their position on a real line. We here initiate a more realistic model for several real-life scenarios. Specifically, we propose and analyze heterogeneous facility location without money, a novel model wherein: (i) we have multiple heterogeneous (i.e., serving different purposes) facilities, (ii) agents' locations are disclosed to the mechanism and (iii) agents bid for the set of facilities they are interested in (as opposed to bidding for their position on the network). We study the heterogeneous facility location problem under two different objective functions, namely: social cost (i.e., sum of all agents' costs) and maximum cost. For either objective function, we study the approximation ratio of both deterministic and randomized truthful algorithms under the simplifying assumption that the underlying network topology is a line. For the social cost objective function, we devise an (n-1)-approximate deterministic truthful mechanism and prove a constant approximation lower bound. Furthermore, we devise an optimal and truthful (in expectation) randomized algorithm. As regards the maximum cost objective function, we propose a 3-approximate deterministic strategyproof algorithm, and prove a 3/2 approximation lower bound for deterministic strategyproof mechanisms. Furthermore, we propose a 3/2-approximate randomized strategyproof algorithm and prove a 4/3 approximation lower bound for randomized strategyproof algorithms

    Truthful approximations to range voting

    Full text link
    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare maximization in this setting. With m being the number of alternatives, we exhibit a randomized truthful-in-expectation ordinal mechanism implementing an outcome whose expected social welfare is at least an Omega(m^{-3/4}) fraction of the social welfare of the socially optimal alternative. On the other hand, we show that for sufficiently many agents and any truthful-in-expectation ordinal mechanism, there is a valuation profile where the mechanism achieves at most an O(m^{-{2/3}) fraction of the optimal social welfare in expectation. We get tighter bounds for the natural special case of m = 3, and in that case furthermore obtain separation results concerning the approximation ratios achievable by natural restricted classes of truthful-in-expectation mechanisms. In particular, we show that for m = 3 and a sufficiently large number of agents, the best mechanism that is ordinal as well as mixed-unilateral has an approximation ratio between 0.610 and 0.611, the best ordinal mechanism has an approximation ratio between 0.616 and 0.641, while the best mixed-unilateral mechanism has an approximation ratio bigger than 0.660. In particular, the best mixed-unilateral non-ordinal (i.e., cardinal) mechanism strictly outperforms all ordinal ones, even the non-mixed-unilateral ordinal ones

    What to Verify for Optimal Truthful Mechanisms without Money

    Get PDF
    We aim at identifying a minimal set of conditions under which algorithms with good approximation guarantees are truthful without money. In line with recent literature, we wish to express such a set via verification assumptions, i.e., kind of agents' misbehavior that can be made impossible by the designer. We initiate this research endeavour for the paradigmatic problem in approximate mechanism design without money, facility location. It is known how truthfulness imposes (even severe) losses and how certain notions of verification are unhelpful in this setting; one is thus left powerless to solve this problem satisfactorily in presence of selfish agents. We here address this issue and characterize the minimal set of verification assumptions needed for the truthfulness of optimal algorithms, for both social cost and max cost objective functions. En route, we give a host of novel conceptual and technical contributions ranging from topological notions of verification to a lower bounding technique for truthful mechanisms that connects methods to test truthfulness (i.e., cycle monotonicity) with approximation guarantee
    • …
    corecore