5,458 research outputs found

    Power Optimizations in MTJ-based Neural Networks through Stochastic Computing

    Full text link
    Artificial Neural Networks (ANNs) have found widespread applications in tasks such as pattern recognition and image classification. However, hardware implementations of ANNs using conventional binary arithmetic units are computationally expensive, energy-intensive and have large area overheads. Stochastic Computing (SC) is an emerging paradigm which replaces these conventional units with simple logic circuits and is particularly suitable for fault-tolerant applications. Spintronic devices, such as Magnetic Tunnel Junctions (MTJs), are capable of replacing CMOS in memory and logic circuits. In this work, we propose an energy-efficient use of MTJs, which exhibit probabilistic switching behavior, as Stochastic Number Generators (SNGs), which forms the basis of our NN implementation in the SC domain. Further, error resilient target applications of NNs allow us to introduce Approximate Computing, a framework wherein accuracy of computations is traded-off for substantial reductions in power consumption. We propose approximating the synaptic weights in our MTJ-based NN implementation, in ways brought about by properties of our MTJ-SNG, to achieve energy-efficiency. We design an algorithm that can perform such approximations within a given error tolerance in a single-layer NN in an optimal way owing to the convexity of the problem formulation. We then use this algorithm and develop a heuristic approach for approximating multi-layer NNs. To give a perspective of the effectiveness of our approach, a 43% reduction in power consumption was obtained with less than 1% accuracy loss on a standard classification problem, with 26% being brought about by the proposed algorithm.Comment: Accepted in the 2017 IEEE/ACM International Conference on Low Power Electronics and Desig

    DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems

    Full text link
    Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.Comment: The 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2018

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page
    corecore