2,337 research outputs found

    Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level

    Get PDF
    The problem of minimizing the transfer time along a given Cartesian path for redundant robots can be approached in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parameterized joint path. In this framework, multiple suboptimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. We propose a solution method that works at the acceleration level, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. Several numerical results obtained on different robot systems demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with our method is reasonably close to the global time-optimal solution along same Cartesian path. Experimental results on a KUKA LWR IV are also reported, showing the tracking control performance on the executed motions

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Trajectory planning for industrial robot using genetic algorithms

    Full text link
    En las últimas décadas, debido la importancia de sus aplicaciones, se han propuesto muchas investigaciones sobre la planificación de caminos y trayectorias para los manipuladores, algunos de los ámbitos en los que pueden encontrarse ejemplos de aplicación son; la robótica industrial, sistemas autónomos, creación de prototipos virtuales y diseño de fármacos asistido por ordenador. Por otro lado, los algoritmos evolutivos se han aplicado en muchos campos, lo que motiva el interés del autor por investigar sobre su aplicación a la planificación de caminos y trayectorias en robots industriales. En este trabajo se ha llevado a cabo una búsqueda exhaustiva de la literatura existente relacionada con la tesis, que ha servido para crear una completa base de datos utilizada para realizar un examen detallado de la evolución histórica desde sus orígenes al estado actual de la técnica y las últimas tendencias. Esta tesis presenta una nueva metodología que utiliza algoritmos genéticos para desarrollar y evaluar técnicas para la planificación de caminos y trayectorias. El conocimiento de problemas específicos y el conocimiento heurístico se incorporan a la codificación, la evaluación y los operadores genéticos del algoritmo. Esta metodología introduce nuevos enfoques con el objetivo de resolver el problema de la planificación de caminos y la planificación de trayectorias para sistemas robóticos industriales que operan en entornos 3D con obstáculos estáticos, y que ha llevado a la creación de dos algoritmos (de alguna manera similares, con algunas variaciones), que son capaces de resolver los problemas de planificación mencionados. El modelado de los obstáculos se ha realizado mediante el uso de combinaciones de objetos geométricos simples (esferas, cilindros, y los planos), de modo que se obtiene un algoritmo eficiente para la prevención de colisiones. El algoritmo de planificación de caminos se basa en técnicas de optimización globales, usando algoritmos genéticos para minimizar una función objetivo considerando restricciones para evitar las colisiones con los obstáculos. El camino está compuesto de configuraciones adyacentes obtenidas mediante una técnica de optimización construida con algoritmos genéticos, buscando minimizar una función multiobjetivo donde intervienen la distancia entre los puntos significativos de las dos configuraciones adyacentes, así como la distancia desde los puntos de la configuración actual a la final. El planteamiento del problema mediante algoritmos genéticos requiere de una modelización acorde al procedimiento, definiendo los individuos y operadores capaces de proporcionar soluciones eficientes para el problema.Abu-Dakka, FJM. (2011). Trajectory planning for industrial robot using genetic algorithms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10294Palanci

    Numerical approach of collision avoidance and optimal control on robotic manipulators

    Get PDF
    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured

    Optimal redundancy control for robot manipulators

    Get PDF
    Optimal control for kinematically redundant robots is addressed for two different optimization problems. In the first optimization problem, we consider the minimization of the transfer time along a given Cartesian path for a redundant robot. This problem can be solved in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parametrized joint path. In this thesis, multiple sub-optimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. A solution method that works at the acceleration level is proposed, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. The obtained results demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with the proposed method is close to the global time-optimal solution along the same Cartesian path. Furthermore, a reasonable tracking control performance is obtained on the experimental executed motions. In the second optimization problem, we consider the known phenomenon of torque oscillations and motion instabilities that occur in redundant robots during the execution of sufficiently long Cartesian trajectories when the joint torque is instantaneously minimized. In the framework of on-line local redundancy resolution methods, we propose basic variations of the minimum torque scheme to address this issue. Either the joint torque norm is minimized over two successive discrete-time samples using a short preview window, or we minimize the norm of the difference with respect to a desired momentum-damping joint torque, or the two schemes are combined together. The resulting local control methods are all formulated as well-posed linear-quadratic problems, and their closed-form solutions generate also low joint velocities while addressing the primary torque optimization objectives. Stable and consistent behaviors are obtained along short or long Cartesian position trajectories. For the two addressed optimization problems in this thesis, the results are obtained using three different robot systems, namely a 3R planar arm, a 6R Universal Robots UR10, and a 7R KUKA LWR robot

    Minimum-time path planning for robot manipulators using path parameter optimization with external force and frictions

    Get PDF
    This paper presents a new minimum-time trajectory planning method which consists of a desired path in the Cartesian space to a manipulator under external forces subject to the input voltage of the actuators. Firstly, the path is parametrized with an unknown parameter called a path parameter. This parameter is considered a function of time and an unknown parameter vector for optimization. Secondly, the optimization problem is converted into a regular parameter optimization problem, subject to the equations of motion and limitations in angular velocity, angular acceleration, angular jerk, input torques of actuators’, input voltage and final time, respectively. In the presented algorithm, the final time of the task is divided into known partitions, and the final time is an additional unknown variable in the optimization problem. The algorithm attempts to minimize the final time by optimizing the path parameter, thus it is parametrized as a polynomial of time with some unknown parameters. The algorithm can have a smooth input voltage in an allowable range; then all motion parameters and the jerk will remain smooth. Finally, the simulation study shows that the presented approach is efficient in the trajectory planning for a manipulator that wants to follow a Cartesian path. In simulations, the constraints are respected, and all motion variables and path parameters remain smooth

    Trajectory Generation for Robotic Applications using Point Cloud Data

    Get PDF
    Throughout this project, the aim is to develop a program that, based on the processing of three-dimensional point clouds belonging to objects or shapes, achieves the creation of trajectories through route generation algorithms. These trajectories can be subsequently followed by a manipulator robot. The motivation for this project arises as a contribution to the current development of industrial applications involving robotics, where the use of computer vision techniques is increasingly relevant. This implementation can be beneficial in industrial settings such as welding of metal parts, where trajectory planning along the object's surface is required
    corecore