6,306 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks

    On information captured by neural networks: connections with memorization and generalization

    Full text link
    Despite the popularity and success of deep learning, there is limited understanding of when, how, and why neural networks generalize to unseen examples. Since learning can be seen as extracting information from data, we formally study information captured by neural networks during training. Specifically, we start with viewing learning in presence of noisy labels from an information-theoretic perspective and derive a learning algorithm that limits label noise information in weights. We then define a notion of unique information that an individual sample provides to the training of a deep network, shedding some light on the behavior of neural networks on examples that are atypical, ambiguous, or belong to underrepresented subpopulations. We relate example informativeness to generalization by deriving nonvacuous generalization gap bounds. Finally, by studying knowledge distillation, we highlight the important role of data and label complexity in generalization. Overall, our findings contribute to a deeper understanding of the mechanisms underlying neural network generalization.Comment: PhD thesi

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method

    Get PDF
    IntroductionEfficiently recognizing emotions is a critical pursuit in brain–computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, β, or γ, is proposed for electroencephalography (EEG)-based emotion recognition.MethodsThese features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups.ResultsThe best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83–92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects.DiscussionCompared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition

    Fault diagnosis in aircraft fuel system components with machine learning algorithms

    Get PDF
    There is a high demand and interest in considering the social and environmental effects of the component’s lifespan. Aircraft are one of the most high-priced businesses that require the highest reliability and safety constraints. The complexity of aircraft systems designs also has advanced rapidly in the last decade. Consequently, fault detection, diagnosis and modification/ repair procedures are becoming more challenging. The presence of a fault within an aircraft system can result in changes to system performances and cause operational downtime or accidents in a worst-case scenario. The CBM method that predicts the state of the equipment based on data collected is widely used in aircraft MROs. CBM uses diagnostics and prognostics models to make decisions on appropriate maintenance actions based on the Remaining Useful Life (RUL) of the components. The aircraft fuel system is a crucial system of aircraft, even a minor failure in the fuel system can affect the aircraft's safety greatly. A failure in the fuel system that impacts the ability to deliver fuel to the engine will have an immediate effect on system performance and safety. There are very few diagnostic systems that monitor the health of the fuel system and even fewer that can contain detected faults. The fuel system is crucial for the operation of the aircraft, in case of failure, the fuel in the aircraft will become unusable/unavailable to reach the destination. It is necessary to develop fault detection of the aircraft fuel system. The future aircraft fuel system must have the function of fault detection. Through the information of sensors and Machine Learning Techniques, the aircraft fuel system’s fault type can be detected in a timely manner. This thesis discusses the application of a Data-driven technique to analyse the healthy and faulty data collected using the aircraft fuel system model, which is similar to Boeing-777. The data is collected is processed through Machine learning Techniques and the results are comparedPhD in Manufacturin

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Study of soft materials, flexible electronics, and machine learning for fully portable and wireless brain-machine interfaces

    Get PDF
    Over 300,000 individuals in the United States are afflicted with some form of limited motor function from brainstem or spinal-cord related injury resulting in quadriplegia or some form of locked-in syndrome. Conventional brain-machine interfaces used to allow for communication or movement require heavy, rigid components, uncomfortable headgear, excessive numbers of electrodes, and bulky electronics with long wires that result in greater data artifacts and generally inadequate performance. Wireless, wearable electroencephalograms, along with dry non-invasive electrodes can be utilized to allow recording of brain activity on a mobile subject to allow for unrestricted movement. Additionally, multilayer microfabricated flexible circuits, when combined with a soft materials platform allows for imperceptible wearable data acquisition electronics for long term recording. This dissertation aims to introduce new electronics and training paradigms for brain-machine interfaces to provide remedies in the form of communication and movement for these individuals. Here, training is optimized by generating a virtual environment from which a subject can achieve immersion using a VR headset in order to train and familiarize with the system. Advances in hardware and implementation of convolutional neural networks allow for rapid classification and low-latency target control. Integration of materials, mechanics, circuit and electrode design results in an optimized brain-machine interface allowing for rehabilitation and overall improved quality of life.Ph.D

    Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation

    Get PDF
    In this paper, a new methodology is proposed that allows for the low-complexity development of neural network (NN) based equalizers for the mitigation of impairments in high-speed coherent optical transmission systems. In this work, we provide a comprehensive description and comparison of various deep model compression approaches that have been applied to feed-forward and recurrent NN designs. Additionally, we evaluate the influence these strategies have on the performance of each NN equalizer. Quantization, weight clustering, pruning, and other cutting-edge strategies for model compression are taken into consideration. In this work, we propose and evaluate a Bayesian optimization-assisted compression, in which the hyperparameters of the compression are chosen to simultaneously reduce complexity and improve performance. Next, this paper presents four distinct metrics (RMpS, BoP, NABS, and NLGs) that are discussed here that can be used to evaluate the amount of computing complexity required by various compression algorithms. These measurements can serve as a benchmark for evaluating the relative effectiveness of various NN equalizers when compression approaches are used. In conclusion, the trade-off between the complexity of each compression approach and its performance is evaluated by utilizing both simulated and experimental data in order to complete the analysis. By utilizing optimal compression approaches, we show that it is possible to design an NN-based equalizer that is simpler to implement and has better performance than the conventional digital back-propagation (DBP) equalizer with only one step per span. This is accomplished by reducing the number of multipliers used in the NN equalizer after applying the weighted clustering and pruning algorithms. Furthermore, we demonstrate that an equalizer based on NN can also achieve superior performance while still maintaining the same degree of complexity as the full electronic chromatic dispersion compensation block. We conclude our analysis by highlighting open questions and existing challenges, as well as possible future research directions
    • …
    corecore