1,370 research outputs found

    Towards parallelizable sampling-based Nonlinear Model Predictive Control

    Full text link
    This paper proposes a new sampling-based nonlinear model predictive control (MPC) algorithm, with a bound on complexity quadratic in the prediction horizon N and linear in the number of samples. The idea of the proposed algorithm is to use the sequence of predicted inputs from the previous time step as a warm start, and to iteratively update this sequence by changing its elements one by one, starting from the last predicted input and ending with the first predicted input. This strategy, which resembles the dynamic programming principle, allows for parallelization up to a certain level and yields a suboptimal nonlinear MPC algorithm with guaranteed recursive feasibility, stability and improved cost function at every iteration, which is suitable for real-time implementation. The complexity of the algorithm per each time step in the prediction horizon depends only on the horizon, the number of samples and parallel threads, and it is independent of the measured system state. Comparisons with the fmincon nonlinear optimization solver on benchmark examples indicate that as the simulation time progresses, the proposed algorithm converges rapidly to the "optimal" solution, even when using a small number of samples.Comment: 9 pages, 9 pictures, submitted to IFAC World Congress 201

    Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints

    Full text link
    This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure probabilistic constraint satisfaction. The generalized polynomial chaos framework is used to propagate the time-invariant stochastic uncertainties through the nonlinear system dynamics, and to efficiently sample from the probability densities of the states to approximate the satisfaction probability of the chance constraints. To increase computational efficiency by avoiding excessive sampling, a statistical analysis is proposed to systematically determine a-priori the least conservative constraint tightening required at a given sample size to guarantee a desired feasibility probability of the sample-approximated chance constraint optimization problem. In addition, a method is presented for sample-based approximation of the analytic gradients of the chance constraints, which increases the optimization efficiency significantly. The proposed stochastic nonlinear model predictive control approach is applicable to a broad class of nonlinear systems with the sufficient condition that each term is analytic with respect to the states, and separable with respect to the inputs, states and parameters. The closed-loop performance of the proposed approach is evaluated using the Williams-Otto reactor with seven states, and ten uncertain parameters and initial conditions. The results demonstrate the efficiency of the approach for real-time stochastic model predictive control and its capability to systematically account for probabilistic uncertainties in contrast to a nonlinear model predictive control approaches.Comment: Submitted to Journal of Process Contro
    • …
    corecore