43,455 research outputs found

    Approximate Dynamic Programming via Sum of Squares Programming

    Full text link
    We describe an approximate dynamic programming method for stochastic control problems on infinite state and input spaces. The optimal value function is approximated by a linear combination of basis functions with coefficients as decision variables. By relaxing the Bellman equation to an inequality, one obtains a linear program in the basis coefficients with an infinite set of constraints. We show that a recently introduced method, which obtains convex quadratic value function approximations, can be extended to higher order polynomial approximations via sum of squares programming techniques. An approximate value function can then be computed offline by solving a semidefinite program, without having to sample the infinite constraint. The policy is evaluated online by solving a polynomial optimization problem, which also turns out to be convex in some cases. We experimentally validate the method on an autonomous helicopter testbed using a 10-dimensional helicopter model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control Conference, Zurich, Switzerlan

    Semidefinite Relaxations for Stochastic Optimal Control Policies

    Full text link
    Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation have led to the discovery of a formulation of the value function as a linear Partial Differential Equation (PDE) for stochastic nonlinear systems with a mild constraint on their disturbances. This has yielded promising directions for research in the planning and control of nonlinear systems. This work proposes a new method obtaining approximate solutions to these linear stochastic optimal control (SOC) problems. A candidate polynomial with variable coefficients is proposed as the solution to the SOC problem. A Sum of Squares (SOS) relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in Portland, Oregon. 7 pages, colo

    Linear Hamilton Jacobi Bellman Equations in High Dimensions

    Get PDF
    The Hamilton Jacobi Bellman Equation (HJB) provides the globally optimal solution to large classes of control problems. Unfortunately, this generality comes at a price, the calculation of such solutions is typically intractible for systems with more than moderate state space size due to the curse of dimensionality. This work combines recent results in the structure of the HJB, and its reduction to a linear Partial Differential Equation (PDE), with methods based on low rank tensor representations, known as a separated representations, to address the curse of dimensionality. The result is an algorithm to solve optimal control problems which scales linearly with the number of states in a system, and is applicable to systems that are nonlinear with stochastic forcing in finite-horizon, average cost, and first-exit settings. The method is demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with system dimension two, six, and twelve respectively.Comment: 8 pages. Accepted to CDC 201

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    Linearly Solvable Stochastic Control Lyapunov Functions

    Get PDF
    This paper presents a new method for synthesizing stochastic control Lyapunov functions for a class of nonlinear stochastic control systems. The technique relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation to a linear partial differential equation for a class of problems with a particular constraint on the stochastic forcing. This linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions are in fact viscosity super/subsolutions, and by the maximum principle are pointwise upper and lower bounds to the underlying value function, even for coarse polynomial approximations. Furthermore, the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method for generating nonlinear controllers with pointwise bounded distance from the optimal cost when using the optimal controller. These approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a-priori bounds on trajectory suboptimality when using these approximate value functions, as well as demonstrates that these methods, and bounds, can be applied to a more general class of nonlinear systems not obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio
    • …
    corecore