655 research outputs found

    Bit-Vector Model Counting using Statistical Estimation

    Full text link
    Approximate model counting for bit-vector SMT formulas (generalizing \#SAT) has many applications such as probabilistic inference and quantitative information-flow security, but it is computationally difficult. Adding random parity constraints (XOR streamlining) and then checking satisfiability is an effective approximation technique, but it requires a prior hypothesis about the model count to produce useful results. We propose an approach inspired by statistical estimation to continually refine a probabilistic estimate of the model count for a formula, so that each XOR-streamlined query yields as much information as possible. We implement this approach, with an approximate probability model, as a wrapper around an off-the-shelf SMT solver or SAT solver. Experimental results show that the implementation is faster than the most similar previous approaches which used simpler refinement strategies. The technique also lets us model count formulas over floating-point constraints, which we demonstrate with an application to a vulnerability in differential privacy mechanisms

    Model-counting approaches for nonlinear numerical constraints

    Get PDF
    Model counting is of central importance in quantitative rea- soning about systems. Examples include computing the probability that a system successfully accomplishes its task without errors, and measuring the number of bits leaked by a system to an adversary in Shannon entropy. Most previous work in those areas demonstrated their analysis on pro- grams with linear constraints, in which cases model counting is polynomial time. Model counting for nonlinear constraints is notoriously hard, and thus programs with nonlinear constraints are not well-studied. This paper surveys state-of-the-art techniques and tools for model counting with respect to SMT constraints, modulo the bitvector theory, since this theory is decidable, and it can express nonlinear constraints that arise from the analysis of computer programs. We integrate these techniques within the Symbolic Pathfinder platform and evaluate them on difficult nonlinear constraints generated from the analysis of cryptographic functions
    • …
    corecore