3,637 research outputs found

    Exploiting chordal structure in polynomial ideals: a Gr\"obner bases approach

    Get PDF
    Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry, and in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Gr\"obner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Gr\"obner basis algorithms in many cases. The reason is that all computations are done on "smaller" rings, of size equal to the treewidth of the graph. In particular, for a restricted class of ideals, the computational complexity is linear in the number of variables. Chordal structure arises in many relevant applications. We demonstrate the suitability of our methods in examples from graph colorings, cryptography, sensor localization and differential equations.Comment: 40 pages, 5 figure

    Stable Complete Intersections

    Full text link
    A complete intersection of n polynomials in n indeterminates has only a finite number of zeros. In this paper we address the following question: how do the zeros change when the coefficients of the polynomials are perturbed? In the first part we show how to construct semi-algebraic sets in the parameter space over which all the complete intersection ideals share the same number of isolated real zeros. In the second part we show how to modify the complete intersection and get a new one which generates the same ideal but whose real zeros are more stable with respect to perturbations of the coefficients.Comment: 1 figur
    corecore