97,328 research outputs found

    Approximate Clustering without the Approximation

    Full text link

    Greedy Strategy Works for k-Center Clustering with Outliers and Coreset Construction

    Get PDF
    We study the problem of k-center clustering with outliers in arbitrary metrics and Euclidean space. Though a number of methods have been developed in the past decades, it is still quite challenging to design quality guaranteed algorithm with low complexity for this problem. Our idea is inspired by the greedy method, Gonzalez\u27s algorithm, for solving the problem of ordinary k-center clustering. Based on some novel observations, we show that this greedy strategy actually can handle k-center clustering with outliers efficiently, in terms of clustering quality and time complexity. We further show that the greedy approach yields small coreset for the problem in doubling metrics, so as to reduce the time complexity significantly. Our algorithms are easy to implement in practice. We test our method on both synthetic and real datasets. The experimental results suggest that our algorithms can achieve near optimal solutions and yield lower running times comparing with existing methods

    Extremal optimization for sensor report pre-processing

    Full text link
    We describe the recently introduced extremal optimization algorithm and apply it to target detection and association problems arising in pre-processing for multi-target tracking. Here we consider the problem of pre-processing for multiple target tracking when the number of sensor reports received is very large and arrives in large bursts. In this case, it is sometimes necessary to pre-process reports before sending them to tracking modules in the fusion system. The pre-processing step associates reports to known tracks (or initializes new tracks for reports on objects that have not been seen before). It could also be used as a pre-process step before clustering, e.g., in order to test how many clusters to use. The pre-processing is done by solving an approximate version of the original problem. In this approximation, not all pair-wise conflicts are calculated. The approximation relies on knowing how many such pair-wise conflicts that are necessary to compute. To determine this, results on phase-transitions occurring when coloring (or clustering) large random instances of a particular graph ensemble are used.Comment: 10 page

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    The Hardness of Approximation of Euclidean k-means

    Get PDF
    The Euclidean kk-means problem is a classical problem that has been extensively studied in the theoretical computer science, machine learning and the computational geometry communities. In this problem, we are given a set of nn points in Euclidean space RdR^d, and the goal is to choose kk centers in RdR^d so that the sum of squared distances of each point to its nearest center is minimized. The best approximation algorithms for this problem include a polynomial time constant factor approximation for general kk and a (1+ϵ)(1+\epsilon)-approximation which runs in time poly(n)2O(k/ϵ)poly(n) 2^{O(k/\epsilon)}. At the other extreme, the only known computational complexity result for this problem is NP-hardness [ADHP'09]. The main difficulty in obtaining hardness results stems from the Euclidean nature of the problem, and the fact that any point in RdR^d can be a potential center. This gap in understanding left open the intriguing possibility that the problem might admit a PTAS for all k,dk,d. In this paper we provide the first hardness of approximation for the Euclidean kk-means problem. Concretely, we show that there exists a constant ϵ>0\epsilon > 0 such that it is NP-hard to approximate the kk-means objective to within a factor of (1+ϵ)(1+\epsilon). We show this via an efficient reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we give a proof that the current best hardness results for vertex cover can be carried over to triangle-free graphs. To show this we transform GG, a known hard vertex cover instance, by taking a graph product with a suitably chosen graph HH, and showing that the size of the (normalized) maximum independent set is almost exactly preserved in the product graph using a spectral analysis, which might be of independent interest
    corecore