10,704 research outputs found

    Approximation error model (AEM) approach with hybrid methods in the forward-inverse analysis of the transesterification reaction in 3D-microreactors

    Get PDF
    This work advances the approximation error model approach for the inverse analysis of the biodiesel synthesis using soybean oil and methanol in 3D-microreactors. Two hybrid numerical-analytical approaches of reduced computational cost are considered to offer an approximate forward problem solution for a three-dimensional nonlinear coupled diffusive-convective-reactive model. First, the Generalized Integral Transform Technique (GITT) is applied using approximate non-converged solutions of the 3D model, by adopting low truncation orders in the eigenfunction expansions. Second, the Coupled Integral Equations Approach (CIEA) provides a reduced mathematical model for the average concentrations, which leads to inherently approximate solutions. The AEM approach through the Bayesian framework is illustrated in the simultaneous estimation of kinetic and diffusion coefficients of the transesterification reaction. For this purpose, the fully converged GITT results with higher truncation orders for the 3D partial differential model are employed as reference results to define the approximations errors. The results highlight that either the non-converged solutions via GITT or the reduced model solution obtained via CIEA, when taking into account the model error, are robust and cost-effective alternatives for the inverse analysis of nonlinear convection–diffusion-reaction problems

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    Wave model for longitudinal dispersion: Application to the laminar-flow tubular reactor

    Get PDF
    The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model as well as to exact numerical calculations with the 2-D model of the reactor and to other available methods. In many practical cases, the solutions of the wave model agree closely with the exact data. The wave model has a much wider region of validity than the dispersed plug-flow model, has a distinct physical background, and is easier to use for reactor calculations. This provides additional support to the theory developed elsewhere. The properties and the applicability of the wave model to situations with rapidly changing concentration fields are discussed. Constraints to be satisfied are established to use the new theory with confidence for arbitrary initial and boundary conditions

    Approximate Symmetry Analysis of a Class of Perturbed Nonlinear Reaction-Diffusion Equations

    Full text link
    In this paper, the problem of approximate symmetries of a class of non-linear reaction-diffusion equations called Kolmogorov-Petrovsky-Piskounov (KPP) equation is comprehensively analyzed. In order to compute the approximate symmetries, we have applied the method which was proposed by Fushchich and Shtelen [8] and fundamentally based on the expansion of the dependent variables in a perturbation series. Particularly, an optimal system of one dimensional subalgebras is constructed and some invariant solutions corresponding to the resulted symmetries are obtained.Comment: 14 page

    Reduced Order Optimal Control of the Convective FitzHugh-Nagumo Equation

    Full text link
    In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest
    corecore