11,063 research outputs found

    Proving Safety with Trace Automata and Bounded Model Checking

    Full text link
    Loop under-approximation is a technique that enriches C programs with additional branches that represent the effect of a (limited) range of loop iterations. While this technique can speed up the detection of bugs significantly, it introduces redundant execution traces which may complicate the verification of the program. This holds particularly true for verification tools based on Bounded Model Checking, which incorporate simplistic heuristics to determine whether all feasible iterations of a loop have been considered. We present a technique that uses \emph{trace automata} to eliminate redundant executions after performing loop acceleration. The method reduces the diameter of the program under analysis, which is in certain cases sufficient to allow a safety proof using Bounded Model Checking. Our transformation is precise---it does not introduce false positives, nor does it mask any errors. We have implemented the analysis as a source-to-source transformation, and present experimental results showing the applicability of the technique

    Fully Symbolic TCTL Model Checking for Incomplete Timed Systems

    Get PDF
    In this paper we present a fully symbolic TCTL model checking algorithm for incomplete timed systems. Our algorithm is able to prove that a TCTL property is violated or satisfied regardless of the implementation of unknown timed components in the system. For that purpose the algorithm computes over- approximations of sets of states fulfilling a TCTL property φ for at least one implementation of the unknown components and under-approximations of sets of states fulfilling φ for all possible implementations of the unknown components. The algorithm works on a symbolic model for timed systems, called a finite state machine with time (FSMT), and makes use of fully symbolic state set representations containing both the clock values and the state variables. In order to handle incomplete timed systems our model checking algorithm deals with different communication methods between the system and its unknown components, e.g. shared integer variables and urgent and non-urgent synchronization. Our experimental results demonstrate that it is possible to prove interesting properties at early stages of the design when parts of the overall system may not yet be finished. Additionally, fading out components of a large system may dramatically reduce the complexity of the system and thus the effort for verification

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization
    • …
    corecore