2,016 research outputs found

    Practical methods for approximating shortest paths on a convex polytope in R3

    Get PDF
    AbstractWe propose an extremely simple approximation scheme for computing shortest paths on the surface of a convex polytope in three dimensions. Given a convex polytope P with n vertices and two points p, q on its surface, let dP(p, q) denote the shortest path distance between p and q on the surface of P. Our algorithm produces a path of length at most 2dP(p, q) in time O(n). Extending this result, we can also compute an approximation of the shortest path tree rooted at an arbitrary point x ∈ P in time O(n log n). In the approximate tree, the distance between a vertex v ∈ P and x is at most cdP(x, v), where c = 2.38(1 + ε) for any fixed ε > 0. The best algorithms for computing an exact shortest path on a convex polytope take Ω(n2) time in the worst case; in addition, they are too complicated to be suitable in practice. We can also get a weak approximation result in the general case of k disjoint convex polyhedra: in O(n) time our algorithm gives a path of length at most 2k times the optimal

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    Polyhedral computational geometry for averaging metric phylogenetic trees

    Get PDF
    This paper investigates the computational geometry relevant to calculations of the Frechet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are determined by the location of the varying endpoint in a certain polyhedral subdivision of tree space. The variance function associated to a finite subset of tree space has a fixed C∞C^\infty algebraic formula within each cell of the corresponding subdivision, and is continuously differentiable in the interior of each orthant of tree space. We use this subdivision to establish two iterative methods for producing sequences that converge to the Frechet mean: one based on Sturm's Law of Large Numbers, and another based on descent algorithms for finding optima of smooth functions on convex polyhedra. We present properties and biological applications of Frechet means and extend our main results to more general globally nonpositively curved spaces composed of Euclidean orthants.Comment: 43 pages, 6 figures; v2: fixed typos, shortened Sections 1 and 5, added counter example for polyhedrality of vistal subdivision in general CAT(0) cubical complexes; v1: 43 pages, 5 figure

    Shapes of polyhedra and triangulations of the sphere

    Full text link
    The space of shapes of a polyhedron with given total angles less than 2\pi at each of its n vertices has a Kaehler metric, locally isometric to complex hyperbolic space CH^{n-3}. The metric is not complete: collisions between vertices take place a finite distance from a nonsingular point. The metric completion is a complex hyperbolic cone-manifold. In some interesting special cases, the metric completion is an orbifold. The concrete description of these spaces of shapes gives information about the combinatorial classification of triangulations of the sphere with no more than 6 triangles at a vertex.Comment: 39 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTMon1/paper25.abs.htm

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and Σ2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape

    Eight-Fifth Approximation for TSP Paths

    Full text link
    We prove the approximation ratio 8/5 for the metric {s,t}\{s,t\}-path-TSP problem, and more generally for shortest connected TT-joins. The algorithm that achieves this ratio is the simple "Best of Many" version of Christofides' algorithm (1976), suggested by An, Kleinberg and Shmoys (2012), which consists in determining the best Christofides {s,t}\{s,t\}-tour out of those constructed from a family \Fscr_{>0} of trees having a convex combination dominated by an optimal solution x∗x^* of the fractional relaxation. They give the approximation guarantee 5+12\frac{\sqrt{5}+1}{2} for such an {s,t}\{s,t\}-tour, which is the first improvement after the 5/3 guarantee of Hoogeveen's Christofides type algorithm (1991). Cheriyan, Friggstad and Gao (2012) extended this result to a 13/8-approximation of shortest connected TT-joins, for ∣T∣≥4|T|\ge 4. The ratio 8/5 is proved by simplifying and improving the approach of An, Kleinberg and Shmoys that consists in completing x∗/2x^*/2 in order to dominate the cost of "parity correction" for spanning trees. We partition the edge-set of each spanning tree in \Fscr_{>0} into an {s,t}\{s,t\}-path (or more generally, into a TT-join) and its complement, which induces a decomposition of x∗x^*. This decomposition can be refined and then efficiently used to complete x∗/2x^*/2 without using linear programming or particular properties of TT, but by adding to each cut deficient for x∗/2x^*/2 an individually tailored explicitly given vector, inherent in x∗x^*. A simple example shows that the Best of Many Christofides algorithm may not find a shorter {s,t}\{s,t\}-tour than 3/2 times the incidentally common optima of the problem and of its fractional relaxation.Comment: 15 pages, corrected typos in citations, minor change
    • …
    corecore