4,423 research outputs found

    Computational Techniques for Stochastic Reachability

    Get PDF
    As automated control systems grow in prevalence and complexity, there is an increasing demand for verification and controller synthesis methods to ensure these systems perform safely and to desired specifications. In addition, uncertain or stochastic behaviors are often exhibited (such as wind affecting the motion of an aircraft), making probabilistic verification desirable. Stochastic reachability analysis provides a formal means of generating the set of initial states that meets a given objective (such as safety or reachability) with a desired level of probability, known as the reachable (or safe) set, depending on the objective. However, the applicability of reachability analysis is limited in the scope and size of system it can address. First, generating stochastic reachable or viable sets is computationally intensive, and most existing methods rely on an optimal control formulation that requires solving a dynamic program, and which scales exponentially in the dimension of the state space. Second, almost no results exist for extending stochastic reachability analysis to systems with incomplete information, such that the controller does not have access to the full state of the system. This thesis addresses both of the above limitations, and introduces novel computational methods for generating stochastic reachable sets for both perfectly and partially observable systems. We initially consider a linear system with additive Gaussian noise, and introduce two methods for computing stochastic reachable sets that do not require dynamic programming. The first method uses a particle approximation to formulate a deterministic mixed integer linear program that produces an estimate to reachability probabilities. The second method uses a convex chance-constrained optimization problem to generate an under-approximation to the reachable set. Using these methods we are able to generate stochastic reachable sets for a four-dimensional spacecraft docking example in far less time than it would take had we used a dynamic program. We then focus on discrete time stochastic hybrid systems, which provide a flexible modeling framework for systems that exhibit mode-dependent behavior, and whose state space has both discrete and continuous components. We incorporate a stochastic observation process into the hybrid system model, and derive both theoretical and computational results for generating stochastic reachable sets subject to an observation process. The derivation of an information state allows us to recast the problem as one of perfect information, and we prove that solving a dynamic program over the information state is equivalent to solving the original problem. We then demonstrate that the dynamic program to solve the reachability problem for a partially observable stochastic hybrid system shares the same properties as for a partially observable Markov decision process (POMDP) with an additive cost function, and so we can exploit approximation strategies designed for POMDPs to solve the reachability problem. To do so, however, we first generate approximate representations of the information state and value function as either vectors or Gaussian mixtures, through a finite state approximation to the hybrid system or using a Gaussian mixture approximation to an indicator function defined over a convex region. For a system with linear dynamics and Gaussian measurement noise, we show that it exhibits special properties that do not require an approximation of the information state, which enables much more efficient computation of the reachable set. In all cases we provide convergence results and numerical examples

    Observer-based correct-by-design controller synthesis

    Get PDF
    Current state-of-the-art correct-by-design controllers are designed for full-state measurable systems. This work first extends the applicability of correct-by-design controllers to partially observable LTI systems. Leveraging 2nd order bounds we give a design method that has a quantifiable robustness to probabilistic disturbances on state transitions and on output measurements. In a case study from smart buildings we evaluate the new output-based correct-by-design controller on a physical system with limited sensor information

    Safe Policy Synthesis in Multi-Agent POMDPs via Discrete-Time Barrier Functions

    Get PDF
    A multi-agent partially observable Markov decision process (MPOMDP) is a modeling paradigm used for high-level planning of heterogeneous autonomous agents subject to uncertainty and partial observation. Despite their modeling efficiency, MPOMDPs have not received significant attention in safety-critical settings. In this paper, we use barrier functions to design policies for MPOMDPs that ensure safety. Notably, our method does not rely on discretization of the belief space, or finite memory. To this end, we formulate sufficient and necessary conditions for the safety of a given set based on discrete-time barrier functions (DTBFs) and we demonstrate that our formulation also allows for Boolean compositions of DTBFs for representing more complicated safe sets. We show that the proposed method can be implemented online by a sequence of one-step greedy algorithms as a standalone safe controller or as a safety-filter given a nominal planning policy. We illustrate the efficiency of the proposed methodology based on DTBFs using a high-fidelity simulation of heterogeneous robots.Comment: 8 pages and 4 figure

    Temporal Logic Control of POMDPs via Label-based Stochastic Simulation Relations

    Get PDF
    The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement

    Formal synthesis of partially-observable cyber-physical systems

    Get PDF
    This dissertation is motivated by the challenges arising in the synthesis of controllers for partially-observable cyber-physical systems (PO-CPSs). In the past decade, CPSs have become ubiquitous and an integral part of our daily lives. Examples of such systems range from autonomous vehicles, drones, and aircraft to robots and advanced manufacturing. In many applications, these systems are expected to do complex logic tasks. Such tasks can usually be expressed using temporal logic formulae or as (in)finite strings over finite automata. In the past few years, abstraction-based techniques have been very promising for the formal synthesis of controllers. Since these techniques are based on the discretization of state and input sets, when dealing with large-scale systems, unfortunately, they suffer severely from the curse of dimensionality (i.e., the computational complexity grows exponentially with the dimension of the state set). In order to overcome the large computa- tional burden, a discretization-free approach based on control barrier functions has shown great potential to solve formal synthesis problems. In this thesis, we provide a systematic approach to synthesize a hybrid control policy for partially-observable (stochastic) control systems without discretizing the state sets. In many real-life applications, full-state information is not always available (due to the cost of sensing or the unavailability of the measurements). Therefore, in this thesis, we consider partially-observable (stochastic) control systems. Given proper state estimators, our goal is to utilize a notion of control barrier functions to synthesize control policies that provide (and potentially maximize) a lower bound on the probability that the trajectories of the partially-observable (stochastic) control system satisfy complex logic specifications such as safety and those that can be expressed as deterministic finite automata (DFA). Two main approaches are presented in this thesis to construct control barrier functions. In the first approach, no prior knowledge of estimation accuracy is needed. The second approach utilizes a (probability) bound on the estimation accuracy. Though the synthesis procedure for lower-dimensional systems is challenging itself, the task is much more computationally expensive (if not impossible) for large-scale interconnected systems. To overcome the challenges encountered with large-scale systems, we develop approaches to reduce the computational complexity. In particular, by considering a large-scale partially-observable control system as an interconnection of lower-dimensional subsystems, we compute so-called local control barrier functions for subsystems along with the corresponding local controllers. By assuming some small-gain type conditions, we then utilize local control barrier functions of subsystems to compositionally construct an overall control barrier function for the interconnected system. Finally, since closed-form mathematical models of many physical systems are either unavailable or too complicated to be of any use, we also extend our work to the synthesis of safety controllers for partially-observable systems with unknown dynamics. To tackle this problem, we utilize a data-driven approach and construct control barrier functions and their corresponding controllers via sets of data collected from the output trajectories of the systems and the trajectories of the estimators. To demonstrate the effectiveness of the proposed results in the thesis, we consider various case studies, such as a DC motor, an adaptive cruise control (ACC) system consisting of vehicles in a platoon, and a Moore-Greitzer jet engine model
    • …
    corecore