7,381 research outputs found

    Approximating the Largest Root and Applications to Interlacing Families

    Full text link
    We study the problem of approximating the largest root of a real-rooted polynomial of degree nn using its top kk coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in kk that use the top kk coefficients to approximate the maximum root within a factor of n1/kn^{1/k} and 1+O(lognk)21+O(\tfrac{\log n}{k})^2 when klognk\leq \log n and k>lognk>\log n respectively. We also prove corresponding information-theoretic lower bounds of nΩ(1/k)n^{\Omega(1/k)} and 1+Ω(log2nkk)21+\Omega\left(\frac{\log \frac{2n}{k}}{k}\right)^2, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of 2O~(n3)2^{\tilde O(\sqrt[3]n)} for all of them

    String Matching and 1d Lattice Gases

    Full text link
    We calculate the probability distributions for the number of occurrences nn of a given ll letter word in a random string of kk letters. Analytical expressions for the distribution are known for the asymptotic regimes (i) krl1k \gg r^l \gg 1 (Gaussian) and k,lk,l \to \infty such that k/rlk/r^l is finite (Compound Poisson). However, it is known that these distributions do now work well in the intermediate regime krl1k \gtrsim r^l \gtrsim 1. We show that the problem of calculating the string matching probability can be cast into a determining the configurational partition function of a 1d lattice gas with interacting particles so that the matching probability becomes the grand-partition sum of the lattice gas, with the number of particles corresponding to the number of matches. We perform a virial expansion of the effective equation of state and obtain the probability distribution. Our result reproduces the behavior of the distribution in all regimes. We are also able to show analytically how the limiting distributions arise. Our analysis builds on the fact that the effective interactions between the particles consist of a relatively strong core of size ll, the word length, followed by a weak, exponentially decaying tail. We find that the asymptotic regimes correspond to the case where the tail of the interactions can be neglected, while in the intermediate regime they need to be kept in the analysis. Our results are readily generalized to the case where the random strings are generated by more complicated stochastic processes such as a non-uniform letter probability distribution or Markov chains. We show that in these cases the tails of the effective interactions can be made even more dominant rendering thus the asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The lattice gas analogy has been worked out in full, including virial expansion and equation of state. This constitutes the main part of the paper now. Connections with existing work is made and references should be up to date now. To be submitted for publicatio

    Investigation of continuous-time quantum walk on root lattice AnA_n and honeycomb lattice

    Full text link
    The continuous-time quantum walk (CTQW) on root lattice AnA_n (known as hexagonal lattice for n=2n=2) and honeycomb one is investigated by using spectral distribution method. To this aim, some association schemes are constructed from abelian group ZmnZ^{\otimes n}_m and two copies of finite hexagonal lattices, such that their underlying graphs tend to root lattice AnA_n and honeycomb one, as the size of the underlying graphs grows to infinity. The CTQW on these underlying graphs is investigated by using the spectral distribution method and stratification of the graphs based on Terwilliger algebra, where we get the required results for root lattice AnA_n and honeycomb one, from large enough underlying graphs. Moreover, by using the stationary phase method, the long time behavior of CTQW on infinite graphs is approximated with finite ones. Also it is shown that the Bose-Mesner algebras of our constructed association schemes (called nn-variable PP-polynomial) can be generated by nn commuting generators, where raising, flat and lowering operators (as elements of Terwilliger algebra) are associated with each generator. A system of nn-variable orthogonal polynomials which are special cases of \textit{generalized} Gegenbauer polynomials is constructed, where the probability amplitudes are given by integrals over these polynomials or their linear combinations. Finally the suppersymmetric structure of finite honeycomb lattices is revealed. Keywords: underlying graphs of association schemes, continuous-time quantum walk, orthogonal polynomials, spectral distribution. PACs Index: 03.65.UdComment: 41 pages, 4 figure

    Weighted counting of solutions to sparse systems of equations

    Full text link
    Given complex numbers w1,,wnw_1, \ldots, w_n, we define the weight w(X)w(X) of a set XX of 0-1 vectors as the sum of w1x1wnxnw_1^{x_1} \cdots w_n^{x_n} over all vectors (x1,,xn)(x_1, \ldots, x_n) in XX. We present an algorithm, which for a set XX defined by a system of homogeneous linear equations with at most rr variables per equation and at most cc equations per variable, computes w(X)w(X) within relative error ϵ>0\epsilon >0 in (rc)O(lnnlnϵ)(rc)^{O(\ln n-\ln \epsilon)} time provided wjβ(rc)1|w_j| \leq \beta (r \sqrt{c})^{-1} for an absolute constant β>0\beta >0 and all j=1,,nj=1, \ldots, n. A similar algorithm is constructed for computing the weight of a linear code over Fp{\Bbb F}_p. Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.Comment: The exposition is improved, a couple of inaccuracies correcte
    corecore