3,890 research outputs found

    Near-Optimal BRL using Optimistic Local Transitions

    Get PDF
    Model-based Bayesian Reinforcement Learning (BRL) allows a found formalization of the problem of acting optimally while facing an unknown environment, i.e., avoiding the exploration-exploitation dilemma. However, algorithms explicitly addressing BRL suffer from such a combinatorial explosion that a large body of work relies on heuristic algorithms. This paper introduces BOLT, a simple and (almost) deterministic heuristic algorithm for BRL which is optimistic about the transition function. We analyze BOLT's sample complexity, and show that under certain parameters, the algorithm is near-optimal in the Bayesian sense with high probability. Then, experimental results highlight the key differences of this method compared to previous work.Comment: ICML201

    Difference of Convex Functions Programming Applied to Control with Expert Data

    Get PDF
    This paper reports applications of Difference of Convex functions (DC) programming to Learning from Demonstrations (LfD) and Reinforcement Learning (RL) with expert data. This is made possible because the norm of the Optimal Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms, is DC. Improvement in performance is demonstrated on two specific algorithms, namely Reward-regularized Classification for Apprenticeship Learning (RCAL) and Reinforcement Learning with Expert Demonstrations (RLED), through experiments on generic Markov Decision Processes (MDP), called Garnets
    corecore