934 research outputs found

    PRSim: Sublinear Time SimRank Computation on Large Power-Law Graphs

    Full text link
    {\it SimRank} is a classic measure of the similarities of nodes in a graph. Given a node uu in graph G=(V,E)G =(V, E), a {\em single-source SimRank query} returns the SimRank similarities s(u,v)s(u, v) between node uu and each node vVv \in V. This type of queries has numerous applications in web search and social networks analysis, such as link prediction, web mining, and spam detection. Existing methods for single-source SimRank queries, however, incur query cost at least linear to the number of nodes nn, which renders them inapplicable for real-time and interactive analysis. { This paper proposes \prsim, an algorithm that exploits the structure of graphs to efficiently answer single-source SimRank queries. \prsim uses an index of size O(m)O(m), where mm is the number of edges in the graph, and guarantees a query time that depends on the {\em reverse PageRank} distribution of the input graph. In particular, we prove that \prsim runs in sub-linear time if the degree distribution of the input graph follows the power-law distribution, a property possessed by many real-world graphs. Based on the theoretical analysis, we show that the empirical query time of all existing SimRank algorithms also depends on the reverse PageRank distribution of the graph.} Finally, we present the first experimental study that evaluates the absolute errors of various SimRank algorithms on large graphs, and we show that \prsim outperforms the state of the art in terms of query time, accuracy, index size, and scalability.Comment: ACM SIGMOD 201

    Exact Single-Source SimRank Computation on Large Graphs

    Full text link
    SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent years, single-source and top-kk SimRank queries have received increasing attention due to their applications in web mining, social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 10610^6 nodes. Consequently, no existing work has evaluated the actual trade-offs between query time and accuracy on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and top-kk SimRank results on large graphs. With high probability, this algorithm produces ground truths with a rigorous theoretical guarantee. We conduct extensive experiments on real-world datasets to demonstrate the efficiency of ExactSim. The results show that ExactSim provides the ground truth for any single-source SimRank query with a precision up to 7 decimal places within a reasonable query time.Comment: ACM SIGMOD 202

    Non-Conservative Diffusion and its Application to Social Network Analysis

    Full text link
    The random walk is fundamental to modeling dynamic processes on networks. Metrics based on the random walk have been used in many applications from image processing to Web page ranking. However, how appropriate are random walks to modeling and analyzing social networks? We argue that unlike a random walk, which conserves the quantity diffusing on a network, many interesting social phenomena, such as the spread of information or disease on a social network, are fundamentally non-conservative. When an individual infects her neighbor with a virus, the total amount of infection increases. We classify diffusion processes as conservative and non-conservative and show how these differences impact the choice of metrics used for network analysis, as well as our understanding of network structure and behavior. We show that Alpha-Centrality, which mathematically describes non-conservative diffusion, leads to new insights into the behavior of spreading processes on networks. We give a scalable approximate algorithm for computing the Alpha-Centrality in a massive graph. We validate our approach on real-world online social networks of Digg. We show that a non-conservative metric, such as Alpha-Centrality, produces better agreement with empirical measure of influence than conservative metrics, such as PageRank. We hope that our investigation will inspire further exploration into the realms of conservative and non-conservative metrics in social network analysis

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim
    corecore