56,111 research outputs found

    GIANT: Globally Improved Approximate Newton Method for Distributed Optimization

    Full text link
    For distributed computing environment, we consider the empirical risk minimization problem and propose a distributed and communication-efficient Newton-type optimization method. At every iteration, each worker locally finds an Approximate NewTon (ANT) direction, which is sent to the main driver. The main driver, then, averages all the ANT directions received from workers to form a {\it Globally Improved ANT} (GIANT) direction. GIANT is highly communication efficient and naturally exploits the trade-offs between local computations and global communications in that more local computations result in fewer overall rounds of communications. Theoretically, we show that GIANT enjoys an improved convergence rate as compared with first-order methods and existing distributed Newton-type methods. Further, and in sharp contrast with many existing distributed Newton-type methods, as well as popular first-order methods, a highly advantageous practical feature of GIANT is that it only involves one tuning parameter. We conduct large-scale experiments on a computer cluster and, empirically, demonstrate the superior performance of GIANT.Comment: Fixed some typos. Improved writin

    Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

    Full text link
    The numerical solution of partial differential equations on high-dimensional domains gives rise to computationally challenging linear systems. When using standard discretization techniques, the size of the linear system grows exponentially with the number of dimensions, making the use of classic iterative solvers infeasible. During the last few years, low-rank tensor approaches have been developed that allow to mitigate this curse of dimensionality by exploiting the underlying structure of the linear operator. In this work, we focus on tensors represented in the Tucker and tensor train formats. We propose two preconditioned gradient methods on the corresponding low-rank tensor manifolds: A Riemannian version of the preconditioned Richardson method as well as an approximate Newton scheme based on the Riemannian Hessian. For the latter, considerable attention is given to the efficient solution of the resulting Newton equation. In numerical experiments, we compare the efficiency of our Riemannian algorithms with other established tensor-based approaches such as a truncated preconditioned Richardson method and the alternating linear scheme. The results show that our approximate Riemannian Newton scheme is significantly faster in cases when the application of the linear operator is expensive.Comment: 24 pages, 8 figure

    Fast, Accurate Second Order Methods for Network Optimization

    Full text link
    Dual descent methods are commonly used to solve network flow optimization problems, since their implementation can be distributed over the network. These algorithms, however, often exhibit slow convergence rates. Approximate Newton methods which compute descent directions locally have been proposed as alternatives to accelerate the convergence rates of conventional dual descent. The effectiveness of these methods, is limited by the accuracy of such approximations. In this paper, we propose an efficient and accurate distributed second order method for network flow problems. The proposed approach utilizes the sparsity pattern of the dual Hessian to approximate the the Newton direction using a novel distributed solver for symmetric diagonally dominant linear equations. Our solver is based on a distributed implementation of a recent parallel solver of Spielman and Peng (2014). We analyze the properties of the proposed algorithm and show that, similar to conventional Newton methods, superlinear convergence within a neighbor- hood of the optimal value is attained. We finally demonstrate the effectiveness of the approach in a set of experiments on randomly generated networks.Comment: arXiv admin note: text overlap with arXiv:1502.0315
    • …
    corecore