6,027 research outputs found

    Statistical-mechanics approach to a reinforcement learning model with memory

    Full text link
    We introduce a two-player model of reinforcement learning with memory. Past actions of an iterated game are stored in a memory and used to determine player's next action. To examine the behaviour of the model some approximate methods are used and confronted against numerical simulations and exact master equation. When the length of memory of players increases to infinity the model undergoes an absorbing-state phase transition. Performance of examined strategies is checked in the prisoner' dilemma game. It turns out that it is advantageous to have a large memory in symmetric games, but it is better to have a short memory in asymmetric ones.Comment: 6 pages, some additional numerical calculation

    Adaptive energy minimization of OpenMP parallel applications on many-core systems

    No full text
    Energy minimization of parallel applications is an emerging challenge for current and future generations of many-core computing systems. In this paper, we propose a novel and scalable energy minimization approach that suitably applies DVFS in the sequential part and jointly considers DVFS and dynamic core allocations in the parallel part. Fundamental to this approach is an iterative learning based control algorithm that adapt the voltage/frequency scaling and core allocations dynamically based on workload predictions and is guided by the CPU performance counters at regular intervals. The adaptation is facilitated through performance annotations in the application codes, defined in a modified OpenMP runtime library. The proposed approach is validated on an Intel Xeon E5-2630 platform with up to 24 CPUs running NAS parallel benchmark applications. We show that our proposed approach can effectively adapt to different architecture and core allocations and minimize energy consumption by up to 17% compared to the existing approaches for a given performance requirement
    corecore