2,566 research outputs found

    Semantic metrics

    Get PDF
    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and?or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a variety of research disciplines, and enrich them with semantics based on standard Description Logic constructs. We argue that concept-based metrics can be aggregated to produce numeric distances at ontology-level and we speculate on the usability of our ideas through potential areas

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    Initiating organizational memories using ontology network analysis

    Get PDF
    One of the important problems in organizational memories is their initial set-up. It is difficult to choose the right information to include in an organizational memory, and the right information is also a prerequisite for maximizing the uptake and relevance of the memory content. To tackle this problem, most developers adopt heavy-weight solutions and rely on a faithful continuous interaction with users to create and improve its content. In this paper, we explore the use of an automatic, light-weight solution, drawn from the underlying ingredients of an organizational memory: ontologies. We have developed an ontology-based network analysis method which we applied to tackle the problem of identifying communities of practice in an organization. We use ontology-based network analysis as a means to provide content automatically for the initial set up of an organizational memory

    The management and integration of biomedical knowledge: Application in the health-e-child project (position paper)

    Get PDF
    The Health-e-Child project aims to develop an integrated healthcare platform for European paediatrics. In order to achieve a comprehensive view of children’s health, a complex integration of biomedical data, information, and knowledge is necessary. Ontologies will be used to formally define this domain knowledge and will form the basis for the medical knowledge management system. This paper introduces an innovative methodology for the vertical integration of biomedical knowledge. This approach will be largely clinician-centered and will enable the definition of ontology fragments, connections between them (semantic bridges) and enriched ontology fragments (views). The strategy for the specification and capture of fragments, bridges and views is outlined with preliminary examples demonstrated in the collection of biomedical information from hospital databases, biomedical ontologies, and biomedical public databases

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    PowerAqua: Open Question Answering on the Semantic Web

    Get PDF
    With the rapid growth of semantic information in the Web, the processes of searching and querying these very large amounts of heterogeneous content have become increasingly challenging. This research tackles the problem of supporting users in querying and exploring information across multiple and heterogeneous Semantic Web (SW) sources. A review of literature on ontology-based Question Answering reveals the limitations of existing technology. Our approach is based on providing a natural language Question Answering interface for the SW, PowerAqua. The realization of PowerAqua represents a considerable advance with respect to other systems, which restrict their scope to an ontology-specific or homogeneous fraction of the publicly available SW content. To our knowledge, PowerAqua is the only system that is able to take advantage of the semantic data available on the Web to interpret and answer user queries posed in natural language. In particular, PowerAqua is uniquely able to answer queries by combining and aggregating information, which can be distributed across heterogeneous semantic resources. Here, we provide a complete overview of our work on PowerAqua, including: the research challenges it addresses; its architecture; the techniques we have realised to map queries to semantic data, to integrate partial answers drawn from different semantic resources and to rank alternative answers; and the evaluation studies we have performed, to assess the performance of PowerAqua. We believe our experiences can be extrapolated to a variety of end-user applications that wish to open up to large scale and heterogeneous structured datasets, to be able to exploit effectively what possibly is the greatest wealth of data in the history of Artificial Intelligence
    • 

    corecore