25,016 research outputs found

    Variational Inference in Nonconjugate Models

    Full text link
    Mean-field variational methods are widely used for approximate posterior inference in many probabilistic models. In a typical application, mean-field methods approximately compute the posterior with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the coordinate updates are easily derived and in closed form. However, many models of interest---like the correlated topic model and Bayesian logistic regression---are nonconjuate. In these models, mean-field methods cannot be directly applied and practitioners have had to develop variational algorithms on a case-by-case basis. In this paper, we develop two generic methods for nonconjugate models, Laplace variational inference and delta method variational inference. Our methods have several advantages: they allow for easily derived variational algorithms with a wide class of nonconjugate models; they extend and unify some of the existing algorithms that have been derived for specific models; and they work well on real-world datasets. We studied our methods on the correlated topic model, Bayesian logistic regression, and hierarchical Bayesian logistic regression

    Doubly Stochastic Variational Inference for Deep Gaussian Processes

    Get PDF
    Gaussian processes (GPs) are a good choice for function approximation as they are flexible, robust to over-fitting, and provide well-calibrated predictive uncertainty. Deep Gaussian processes (DGPs) are multi-layer generalisations of GPs, but inference in these models has proved challenging. Existing approaches to inference in DGP models assume approximate posteriors that force independence between the layers, and do not work well in practice. We present a doubly stochastic variational inference algorithm, which does not force independence between layers. With our method of inference we demonstrate that a DGP model can be used effectively on data ranging in size from hundreds to a billion points. We provide strong empirical evidence that our inference scheme for DGPs works well in practice in both classification and regression.Comment: NIPS 201

    Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression

    Full text link
    This paper presents a novel approach for approximate integration over the uncertainty of noise and signal variances in Gaussian process (GP) regression. Our efficient and straightforward approach can also be applied to integration over input dependent noise variance (heteroscedasticity) and input dependent signal variance (nonstationarity) by setting independent GP priors for the noise and signal variances. We use expectation propagation (EP) for inference and compare results to Markov chain Monte Carlo in two simulated data sets and three empirical examples. The results show that EP produces comparable results with less computational burden
    • …
    corecore