8 research outputs found

    Minimizing Rational Functions by Exact Jacobian SDP Relaxation Applicable to Finite Singularities

    Full text link
    This paper considers the optimization problem of minimizing a rational function. We reformulate this problem as polynomial optimization by the technique of homogenization. These two problems are shown to be equivalent under some generic conditions. The exact Jacobian SDP relaxation method proposed by Nie is used to solve the resulting polynomial optimization. We also prove that the assumption of nonsingularity in Nie's method can be weakened as the finiteness of singularities. Some numerical examples are given to illustrate the efficiency of our method.Comment: 23 page

    Matrix Polynomials and their Lower Rank Approximations

    Get PDF
    This thesis is a wide ranging work on computing a “lower-rank” approximation of a matrix polynomial using second-order non-linear optimization techniques. Two notions of rank are investigated. The first is the rank as the number of linearly independent rows or columns, which is the classical definition. The other notion considered is the lowest rank of a matrix polynomial when evaluated at a complex number, or the McCoy rank. Together, these two notions of rank allow one to compute a nearby matrix polynomial where the structure of both the left and right kernels is prescribed, along with the structure of both the infinite and finite eigenvalues. The computational theory of the calculus of matrix polynomial valued functions is developed and used in optimization algorithms based on second-order approximations. Special functions studied with a detailed error analysis are the determinant and adjoint of matrix polynomials. The unstructured and structured variants of matrix polynomials are studied in a very general setting in the context of an equality constrained optimization problem. The most general instances of these optimization problems are NP hard to approximate solutions to in a global setting. In most instances we are able to prove that solutions to our optimization problems exist (possibly at infinity) and discuss techniques in conjunction with an implementation to compute local minimizers to the problem. Most of the analysis of these problems is local and done through the Karush-Kuhn-Tucker optimality conditions for constrained optimization problems. We show that most formulations of the problems studied satisfy regularity conditions and admit Lagrange multipliers. Furthermore, we show that under some formulations that the second-order sufficient condition holds for instances of interest of the optimization problems in question. When Lagrange multipliers do not exist, we discuss why, and if it is reasonable to do so, how to regularize the problem. In several instances closed form expressions for the derivatives of matrix polynomial valued functions are derived to assist in analysis of the optimality conditions around a solution. From this analysis it is shown that variants of Newton’s method will have a local rate of convergence that is quadratic with a suitable initial guess for many problems. The implementations are demonstrated on some examples from the literature and several examples are cross-validated with different optimization formulations of the same mathematical problem. We conclude with a special application of the theory developed in this thesis is computing a nearby pair of differential polynomials with a non-trivial greatest common divisor, a non-commutative symbolic-numeric computation problem. We formulate this problem as finding a nearby structured matrix polynomial that is rank deficient in the classical sense

    Hybrid Symbolic-Numeric Computing in Linear and Polynomial Algebra

    Get PDF
    In this thesis, we introduce hybrid symbolic-numeric methods for solving problems in linear and polynomial algebra. We mainly address the approximate GCD problem for polynomials, and problems related to parametric and polynomial matrices. For symbolic methods, our main concern is their complexity and for the numerical methods we are more concerned about their stability. The thesis consists of 5 articles which are presented in the following order: Chapter 1, deals with the fundamental notions of conditioning and backward error. Although our results are not novel, this chapter is a novel explication of conditioning and backward error that underpins the rest of the thesis. In Chapter 2, we adapt Victor Y. Pan\u27s root-based algorithm for finding approximate GCD to the case where the polynomials are expressed in Bernstein bases. We use the numerically stable companion pencil of G. F. JĂłnsson to compute the roots, and the Hopcroft-Karp bipartite matching method to find the degree of the approximate GCD. We offer some refinements to improve the process. In Chapter 3, we give an algorithm with similar idea to Chapter 2, which finds an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial. We introduce new clustering algorithms and use them to cluster the roots of each polynomial to identify multiple roots, and then marry the two polynomials using a Maximum Weight Matching (MWM) algorithm, to find their GCD. In Chapter 4, we define ``generalized standard triples\u27\u27 X, zC1 - C0, Y of regular matrix polynomials P(z) in order to use the representation X(zC1 - C0)-1 Y=P-1(z). This representation can be used in constructing algebraic linearizations; for example, for H(z) = z A(z)B(z) + C from linearizations for A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using the coefficients of 1 in terms of the relevant polynomial basis. For convenience we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. We give explicit proofs for the less familiar bases. Chapter 5 is devoted to parametric linear systems (PLS) and related problems, from a symbolic computational point of view. PLS are linear systems of equations in which some symbolic parameters, that is, symbols that are not considered to be candidates for elimination or solution in the course of analyzing the problem, appear in the coefficients of the system. We assume that the symbolic parameters appear polynomially in the coefficients and that the only variables to be solved for are those of the linear system. It is well-known that it is possible to specify a covering set of regimes, each of which is a semi-algebraic condition on the parameters together with a solution description valid under that condition.We provide a method of solution that requires time polynomial in the matrix dimension and the degrees of the polynomials when there are up to three parameters. Our approach exploits the Hermite and Smith normal forms that may be computed when the system coefficient domain is mapped to the univariate polynomial domain over suitably constructed fields. Our approach effectively identifies intrinsic singularities and ramification points where the algebraic and geometric structure of the matrix changes. Specially parametric eigenvalue problems can be addressed as well. Although we do not directly address the problem of computing the Jordan form, our approach allows the construction of the algebraic and geometric eigenvalue multiplicities revealed by the Frobenius form, which is a key step in the construction of the Jordan form of a matrix

    Methodik zur Integration von Vorwissen in die Modellbildung

    Get PDF
    This book describes how prior knowledge about dynamical systems and functions can be integrated in mathematical modelling. The first part comprises the transformation of the known properties into a mathematical model and the second part explains four approaches for solving the resulting constrained optimization problems. Numerous examples, tables and compilations complete the book

    Methodik zur Integration von Vorwissen in die Modellbildung

    Get PDF
    Das Buch zeigt, wie Vorwissen über Eigenschaften dynamischer Systeme und über Funktionen in die mathematische Modellbildung integriert werden kann. Hierzu wird im ersten Teil der Arbeit das verbale Vorwissen mathematisch formuliert. Der zweite Teil beschreibt vier Zugängen, um die entstehenden restringierten Probleme zu lösen. Zahlreiche Beispiele, Tabellen und Zusammenstellungen vervollständigen das Buch
    corecore