50 research outputs found

    randUTV: A blocked randomized algorithm for computing a rank-revealing UTV factorization

    Full text link
    This manuscript describes the randomized algorithm randUTV for computing a so called UTV factorization efficiently. Given a matrix AA, the algorithm computes a factorization A=UTVA = UTV^{*}, where UU and VV have orthonormal columns, and TT is triangular (either upper or lower, whichever is preferred). The algorithm randUTV is developed primarily to be a fast and easily parallelized alternative to algorithms for computing the Singular Value Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for problems such as low-rank approximation, solving ill-conditioned linear systems, determining bases for various subspaces associated with the matrix, etc. Moreover, randUTV produces highly accurate approximations to the singular values of AA. Unlike the SVD, the randomized algorithm proposed builds a UTV factorization in an incremental, single-stage, and non-iterative way, making it possible to halt the factorization process once a specified tolerance has been met. Numerical experiments comparing the accuracy and speed of randUTV to the SVD are presented. These experiments demonstrate that in comparison to column pivoted QR, which is another factorization that is often used as a relatively economic alternative to the SVD, randUTV compares favorably in terms of speed while providing far higher accuracy

    randUTV: A Blocked Randomized Algorithm for Computing a Rank-Revealing UTV Factorization

    Get PDF
    A randomized algorithm for computing a so-called UTV factorization efficiently is presented. Given a matrix , the algorithm “randUTV” computes a factorization , where and have orthonormal columns, and is triangular (either upper or lower, whichever is preferred). The algorithm randUTV is developed primarily to be a fast and easily parallelized alternative to algorithms for computing the Singular Value Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for problems such as low-rank approximation, solving ill-conditioned linear systems, and determining bases for various subspaces associated with the matrix. Moreover, randUTV produces highly accurate approximations to the singular values of . Unlike the SVD, the randomized algorithm proposed builds a UTV factorization in an incremental, single-stage, and noniterative way, making it possible to halt the factorization process once a specified tolerance has been met. Numerical experiments comparing the accuracy and speed of randUTV to the SVD are presented. Other experiments also demonstrate that in comparison to column-pivoted QR, which is another factorization that is often used as a relatively economic alternative to the SVD, randUTV compares favorably in terms of speed while providing far higher accuracy

    Efficient algorithms for computing rank-revealing factorizations on a GPU

    Full text link
    Standard rank-revealing factorizations such as the singular value decomposition and column pivoted QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the inability of standard algorithms to cast most operations in terms of the Level-3 BLAS. This paper presents two alternative algorithms for computing a rank-revealing factorization of the form A=UTVA = U T V^*, where UU and VV are orthogonal and TT is triangular. Both algorithms use randomized projection techniques to cast most of the flops in terms of matrix-matrix multiplication, which is exceptionally efficient on the GPU. Numerical experiments illustrate that these algorithms achieve an order of magnitude acceleration over finely tuned GPU implementations of the SVD while providing low-rank approximation errors close to that of the SVD

    GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

    Get PDF
    Symmetric generalized eigenvalue problems arise in many physical applications and frequently only a few of the eigenpairs are of interest. Typically, the problems are large and sparse, and therefore traditional methods such as the QZ algorithm may not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos, a favored method for problems of this type, due to difficulties in applying the inverse of the shifted matrix. With these difficulties in mind, Golub and Ye developed an inverse free Krylov subspace algorithm for the symmetric generalized eigenvalue problem. This method does not rely on shift-and-invert transformations for convergence acceleration, but rather a preconditioner is used. The algorithm suffers, however, in the presence of multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme eigenvalues. In this work, we extend the method of Golub and Ye by developing a block generalization of their algorithm which enjoys considerably faster convergence than the usual method in the presence of multiplicities and clusters. Preconditioning techniques for the problems are discussed at length, and some insight is given into how these preconditioners accelerate the method. Finally we discuss a transformation which can be applied so that the algorithm extracts interior eigenvalues. A preconditioner based on a QR factorization with respect to the B-1 inner product is developed and applied in locating interior eigenvalues
    corecore