10,390 research outputs found

    Approximate Causal Abstraction

    Get PDF
    Scientific models describe natural phenomena at different levels of abstraction. Abstract descriptions can provide the basis for interventions on the system and explanation of observed phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern (2019), building on work of Rubenstein et al. (2017), developed an account of abstraction for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approximation of the underlying system. We show how the resulting account handles the discrepancy that can arise between low- and high-level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to probabilistic causal models, indicating how and where uncertainty can enter into an approximate abstraction

    Learning Causal State Representations of Partially Observable Environments

    Get PDF
    Intelligent agents can cope with sensory-rich environments by learning task-agnostic state abstractions. In this paper, we propose mechanisms to approximate causal states, which optimally compress the joint history of actions and observations in partially-observable Markov decision processes. Our proposed algorithm extracts causal state representations from RNNs that are trained to predict subsequent observations given the history. We demonstrate that these learned task-agnostic state abstractions can be used to efficiently learn policies for reinforcement learning problems with rich observation spaces. We evaluate agents using multiple partially observable navigation tasks with both discrete (GridWorld) and continuous (VizDoom, ALE) observation processes that cannot be solved by traditional memory-limited methods. Our experiments demonstrate systematic improvement of the DQN and tabular models using approximate causal state representations with respect to recurrent-DQN baselines trained with raw inputs

    Approximate Causal Abstraction

    Get PDF
    Scientific models describe natural phenomena at different levels of abstraction. Abstract descriptions can provide the basis for interventions on the system and explanation of observed phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern (2019), building on work of Rubenstein et al. (2017), developed an account of abstraction for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approximation of the underlying system. We show how the resulting account handles the discrepancy that can arise between low- and high-level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to probabilistic causal models, indicating how and where uncertainty can enter into an approximate abstraction

    Learning Causal State Representations of Partially Observable Environments

    Get PDF
    Intelligent agents can cope with sensory-rich environments by learning task-agnostic state abstractions. In this paper, we propose mechanisms to approximate causal states, which optimally compress the joint history of actions and observations in partially-observable Markov decision processes. Our proposed algorithm extracts causal state representations from RNNs that are trained to predict subsequent observations given the history. We demonstrate that these learned task-agnostic state abstractions can be used to efficiently learn policies for reinforcement learning problems with rich observation spaces. We evaluate agents using multiple partially observable navigation tasks with both discrete (GridWorld) and continuous (VizDoom, ALE) observation processes that cannot be solved by traditional memory-limited methods. Our experiments demonstrate systematic improvement of the DQN and tabular models using approximate causal state representations with respect to recurrent-DQN baselines trained with raw inputs

    Abstraction and its Limits: Finding Space for Novel Explanation.

    Get PDF
    Several modern accounts of explanation acknowledge the importance of abstraction and idealization for our explanatory practice. However, once we allow a role for abstraction, questions remain. I ask whether the relation between explanations at different theoretical levels should be thought of wholly in terms of abstraction, and argue that changes of variable between theories can lead to novel explanations that are not merely abstractions of some more detailed picture. I use the example of phase transitions as described by statistical mechanics and thermodynamics to illustrate this, and to demonstrate some details of the relationship between abstraction, idealization, and novel explanation
    • ā€¦
    corecore