4,277 research outputs found

    Noisy Channel-Output Feedback Capacity of the Linear Deterministic Interference Channel

    Get PDF
    In this paper, the capacity region of the two-user linear deterministic (LD) interference channel with noisy output feedback (IC-NOF) is fully characterized. This result allows the identification of several asymmetric scenarios in which imple- menting channel-output feedback in only one of the transmitter- receiver pairs is as beneficial as implementing it in both links, in terms of achievable individual rate and sum-rate improvements w.r.t. the case without feedback. In other scenarios, the use of channel-output feedback in any of the transmitter-receiver pairs benefits only one of the two pairs in terms of achievable individual rate improvements or simply, it turns out to be useless, i.e., the capacity regions with and without feedback turn out to be identical even in the full absence of noise in the feedback links.Comment: 5 pages, 9 figures, see proofs in V. Quintero, S. M. Perlaza, and J.-M. Gorce, "Noisy channel-output feedback capacity of the linear deterministic interference channel," INRIA, Tech. Rep. 456, Jan. 2015. This was submitted and accepted in IEEE ITW 201

    Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

    Full text link
    In this paper, we study the impact of different channel output feedback architectures on the capacity of the two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures (see Fig. 2), ranging from only one feedback link to four feedback links. We derive the exact capacity region for the symmetric deterministic interference channel and the constant-gap capacity region for the symmetric Gaussian interference channel for all of the 9 architectures. We show that for a linear deterministic symmetric interference channel, in the weak interference regime, all models of feedback, except the one, which has only one of the receivers feeding back to its own transmitter, have the identical capacity region. When only one of the receivers feeds back to its own transmitter, the capacity region is a strict subset of the capacity region of the rest of the feedback models in the weak interference regime. However, the sum-capacity of all feedback models is identical in the weak interference regime. Moreover, in the strong interference regime all models of feedback with at least one of the receivers feeding back to its own transmitter have the identical sum-capacity. For the Gaussian interference channel, the results of the linear deterministic model follow, where capacity is replaced with approximate capacity.Comment: submitted to IEEE Transactions on Information Theory, results improved by deriving capacity region of all 9 canonical feedback models in two-user interference channe

    Perfect Output Feedback in the Two-User Decentralized Interference Channel

    Get PDF
    In this paper, the η\eta-Nash equilibrium (η\eta-NE) region of the two-user Gaussian interference channel (IC) with perfect output feedback is approximated to within 11 bit/s/Hz and η\eta arbitrarily close to 11 bit/s/Hz. The relevance of the η\eta-NE region is that it provides the set of rate-pairs that are achievable and stable in the IC when both transmitter-receiver pairs autonomously tune their own transmit-receive configurations seeking an η\eta-optimal individual transmission rate. Therefore, any rate tuple outside the η\eta-NE region is not stable as there always exists one link able to increase by at least η\eta bits/s/Hz its own transmission rate by updating its own transmit-receive configuration. The main insights that arise from this work are: (i)(i) The η\eta-NE region achieved with feedback is larger than or equal to the η\eta-NE region without feedback. More importantly, for each rate pair achievable at an η\eta-NE without feedback, there exists at least one rate pair achievable at an η\eta-NE with feedback that is weakly Pareto superior. (ii)(ii) There always exists an η\eta-NE transmit-receive configuration that achieves a rate pair that is at most 11 bit/s/Hz per user away from the outer bound of the capacity region.Comment: Revised version (Aug. 2015

    On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay

    Full text link
    When multiple users share the same resource for physical layer cooperation such as relay terminals in their vicinities, this shared resource may not be always available for every user, and it is critical for transmitting terminals to know whether other users have access to that common resource in order to better utilize it. Failing to learn this critical piece of information may cause severe issues in the design of such cooperative systems. In this paper, we address this problem by investigating a two-pair two-way relay channel with an intermittently available relay. In the model, each pair of users need to exchange their messages within their own pair via the shared relay. The shared relay, however, is only intermittently available for the users to access. The accessing activities of different pairs of users are governed by independent Bernoulli random processes. Our main contribution is the characterization of the capacity region to within a bounded gap in a symmetric setting, for both delayed and instantaneous state information at transmitters. An interesting observation is that the bottleneck for information flow is the quality of state information (delayed or instantaneous) available at the relay, not those at the end users. To the best of our knowledge, our work is the first result regarding how the shared intermittent relay should cooperate with multiple pairs of users in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape
    corecore