1,589 research outputs found

    25 Years of IIF Time Series Forecasting: A Selective Review

    Get PDF
    We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these journals concerned time series forecasting. We also review highly influential works on time series forecasting that have been published elsewhere during this period. Enormous progress has been made in many areas, but we find that there are a large number of topics in need of further development. We conclude with comments on possible future research directions in this field.Accuracy measures; ARCH model; ARIMA model; Combining; Count data; Densities; Exponential smoothing; Kalman Filter; Long memory; Multivariate; Neural nets; Nonlinearity; Prediction intervals; Regime switching models; Robustness; Seasonality; State space; Structural models; Transfer function; Univariate; VAR.

    Measuring the Stance of Monetary Policy in a Closed Economy: A Dynamic Stochastic General Equilibrium Approach

    Get PDF
    This paper develops and estimates a dynamic stochastic general equilibrium model of a closed economy which provides a quantitative description of the monetary transmission mechanism, yields a mutually consistent set of indicators of inflationary pressure together with confidence intervals, and facilitates the generation of relatively accurate forecasts. The model features short run nominal price and wage rigidities generated by monopolistic competition and staggered reoptimization in output and labour markets. The resultant inertia in inflation and persistence in output is enhanced with other features such as habit persistence in consumption and labour supply, adjustment costs in housing and capital investment, and variable capital utilization. Cyclical components are modeled by linearizing equilibrium conditions around a stationary deterministic steady state equilibrium which abstracts from long run balanced growth, while trend components are modeled as random walks while ensuring the existence of a well defined balanced growth path. Parameters and unobserved components are jointly estimated with a novel Bayesian full information maximum likelihood procedure, conditional on prior information concerning the values of parameters and trend components.Stance of monetary policy; Dynamic stochastic general equilibrium model; Monetary transmission mechanism; Forecast performance evaluation

    A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    Full text link
    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework for unsupervised learning of sequential data that disentangles two latent representations: an object's representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate high dimensional frames at each time step. The model is trained end-to-end on videos of a variety of simulated physical systems, and outperforms competing methods in generative and missing data imputation tasks.Comment: NIPS 201

    State space models for non‐stationary intermittently coupled systems: an application to the North Atlantic oscillation

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability: The data that are analysed in the paper and the programs that were used to analyse them can be obtained from https://rss.onlinelibrary.wiley.com/hub/journal/14679876/seriescdatasetsWe develop Bayesian state space methods for modelling changes to the mean level or temporal correlation structure of an observed time series due to intermittent coupling with an unobserved process. Novel intervention methods are proposed to model the effect of repeated coupling as a single dynamic process. Latent time varying auto‐regressive components are developed to model changes in the temporal correlation structure. Efficient filtering and smoothing methods are derived for the resulting class of models. We propose methods for quantifying the component of variance attributable to an unobserved process, the effect during individual coupling events and the potential for skilful forecasts. The methodology proposed is applied to the study of winter time variability in the dominant pattern of climate variation in the northern hemisphere: the North Atlantic oscillation. Around 70% of the interannual variance in the winter (December–January–February) mean level is attributable to an unobserved process. Skilful forecasts for the winter (December–January–February) mean are possible from the beginning of December.Natural Environment Research Council (NERC
    • …
    corecore