688 research outputs found

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Modeling performance of Hadoop applications: A journey from queueing networks to stochastic well formed nets

    Get PDF
    Nowadays, many enterprises commit to the extraction of actionable knowledge from huge datasets as part of their core business activities. Applications belong to very different domains such as fraud detection or one-to-one marketing, and encompass business analytics and support to decision making in both private and public sectors. In these scenarios, a central place is held by the MapReduce framework and in particular its open source implementation, Apache Hadoop. In such environments, new challenges arise in the area of jobs performance prediction, with the needs to provide Service Level Agreement guarantees to the enduser and to avoid waste of computational resources. In this paper we provide performance analysis models to estimate MapReduce job execution times in Hadoop clusters governed by the YARN Capacity Scheduler. We propose models of increasing complexity and accuracy, ranging from queueing networks to stochastic well formed nets, able to estimate job performance under a number of scenarios of interest, including also unreliable resources. The accuracy of our models is evaluated by considering the TPC-DS industry benchmark running experiments on Amazon EC2 and the CINECA Italian supercomputing center. The results have shown that the average accuracy we can achieve is in the range 9–14%

    Parameter Synthesis for Markov Models

    Full text link
    Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification φ\varphi. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy φ\varphi?, (b) which regions satisfy φ\varphi and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.Comment: 38 page

    НЕЙРО-СЕТЕВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

    Get PDF
    Purpose. Form a neuro-fuzzy network based on temperature monitoring of overhead transmission line for the prediction modes of the electrical network. Methodology. To predict the load capacity of the overhead line architecture provides the use of neuro-fuzzy network based on temperature monitoring of overhead line. The proposed neuro-fuzzy network has a four-layer architecture with direct transmission of information. To create a full mesh network architecture based on hybrid neural elements with power estimation accuracy of the following two stages of the procedure: - in the first stage a core network (without power estimation accuracy) is generated; - in the second stage architecture and network parameters are fixed obtained during the first stage, and it is added to the block estimation accuracy, the input signals which are all input, internal and output signals of the core network, as well as additional input signals. Results. Formed neuro-fuzzy network based on temperature monitoring of overhead line. Originality. A distinctive feature of the proposed network is the ability to process information specified in the different scales of measurement, and high performance for prediction modes mains. Practical value. The monitoring system will become a tool parameter is measuring the temperature of the wire, which will, based on a retrospective analysis of the accumulated information on the parameters to predict the thermal resistance of the HV line and as a result carry out the calculation of load capacity in real time.В статье сформирована нейро-фаззи сеть с учетом температурного мониторинга воздушной линии. Отличительной особенностью, предложенной сети, являются возможность обработки информации, заданной в разных шкалах измерения, и высокое быстродействие для прогнозирования режимов работы электрической сети.У статті сформована нейро-фаззі мережа з урахуванням температурного моніторингу повітряної лінії. Відмінною особливістю, запропонованої мережі, є можливість обробки інформації, яку задано в різних шкалах вимірювання, і висока швидкодія для прогнозування режимів роботи електричної мережі
    corecore