1,835 research outputs found

    StocHy: automated verification and synthesis of stochastic processes

    Full text link
    StocHy is a software tool for the quantitative analysis of discrete-time stochastic hybrid systems (SHS). StocHy accepts a high-level description of stochastic models and constructs an equivalent SHS model. The tool allows to (i) simulate the SHS evolution over a given time horizon; and to automatically construct formal abstractions of the SHS. Abstractions are then employed for (ii) formal verification or (iii) control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate simulation, verification and synthesis engines, which are implemented as independent libraries. This allows for libraries to be easily used and for extensions to be easily built. The tool is implemented in C++ and employs manipulations based on vector calculus, the use of sparse matrices, the symbolic construction of probabilistic kernels, and multi-threading. Experiments show StocHy's markedly improved performance when compared to existing abstraction-based approaches: in particular, StocHy beats state-of-the-art tools in terms of precision (abstraction error) and computational effort, and finally attains scalability to large-sized models (12 continuous dimensions). StocHy is available at www.gitlab.com/natchi92/StocHy

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions

    Full text link
    The goal of this work is to formally abstract a Markov process evolving in discrete time over a general state space as a finite-state Markov chain, with the objective of precisely approximating its state probability distribution in time, which allows for its approximate, faster computation by that of the Markov chain. The approach is based on formal abstractions and employs an arbitrary finite partition of the state space of the Markov process, and the computation of average transition probabilities between partition sets. The abstraction technique is formal, in that it comes with guarantees on the introduced approximation that depend on the diameters of the partitions: as such, they can be tuned at will. Further in the case of Markov processes with unbounded state spaces, a procedure for precisely truncating the state space within a compact set is provided, together with an error bound that depends on the asymptotic properties of the transition kernel of the original process. The overall abstraction algorithm, which practically hinges on piecewise constant approximations of the density functions of the Markov process, is extended to higher-order function approximations: these can lead to improved error bounds and associated lower computational requirements. The approach is practically tested to compute probabilistic invariance of the Markov process under study, and is compared to a known alternative approach from the literature.Comment: 29 pages, Journal of Logical Methods in Computer Scienc

    Probabilistic Guarantees for Safe Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns. Rigorous testing of these controllers is challenging, particularly when they operate in probabilistic environments due to, for example, hardware faults or noisy sensors. We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in stochastic settings. Our approach is based on the iterative construction of a formal abstraction of a controller's execution in an environment, and leverages probabilistic model checking of Markov decision processes to produce probabilistic guarantees on safe behaviour over a finite time horizon. It produces bounds on the probability of safe operation of the controller for different initial configurations and identifies regions where correct behaviour can be guaranteed. We implement and evaluate our approach on agents trained for several benchmark control problems

    Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions

    Full text link
    This work discusses a two-step procedure, based on formal abstractions, to generate a finite-space stochastic dynamical model as an aggregation of the continuous temperature dynamics of a homogeneous population of Thermostatically Controlled Loads (TCL). The temperature of a single TCL is described by a stochastic difference equation and the TCL status (ON, OFF) by a deterministic switching mechanism. The procedure is formal as it allows the exact quantification of the error introduced by the abstraction -- as such it builds and improves on a known, earlier approximation technique in the literature. Further, the contribution discusses the extension to the case of a heterogeneous population of TCL by means of two approaches resulting in the notion of approximate abstractions. It moreover investigates the problem of global (population-level) regulation and load balancing for the case of TCL that are dependent on a control input. The procedure is tested on a case study and benchmarked against the mentioned alternative approach in the literature.Comment: 40 pages, 21 figures; the paper generalizes the result of conference publication: S. Esmaeil Zadeh Soudjani and A. Abate, "Aggregation of Thermostatically Controlled Loads by Formal Abstractions," Proceedings of the European Control Conference 2013, pp. 4232-4237. version 2: added references for section

    When are Stochastic Transition Systems Tameable?

    Full text link
    A decade ago, Abdulla, Ben Henda and Mayr introduced the elegant concept of decisiveness for denumerable Markov chains [1]. Roughly speaking, decisiveness allows one to lift most good properties from finite Markov chains to denumerable ones, and therefore to adapt existing verification algorithms to infinite-state models. Decisive Markov chains however do not encompass stochastic real-time systems, and general stochastic transition systems (STSs for short) are needed. In this article, we provide a framework to perform both the qualitative and the quantitative analysis of STSs. First, we define various notions of decisiveness (inherited from [1]), notions of fairness and of attractors for STSs, and make explicit the relationships between them. Then, we define a notion of abstraction, together with natural concepts of soundness and completeness, and we give general transfer properties, which will be central to several verification algorithms on STSs. We further design a generic construction which will be useful for the analysis of {\omega}-regular properties, when a finite attractor exists, either in the system (if it is denumerable), or in a sound denumerable abstraction of the system. We next provide algorithms for qualitative model-checking, and generic approximation procedures for quantitative model-checking. Finally, we instantiate our framework with stochastic timed automata (STA), generalized semi-Markov processes (GSMPs) and stochastic time Petri nets (STPNs), three models combining dense-time and probabilities. This allows us to derive decidability and approximability results for the verification of these models. Some of these results were known from the literature, but our generic approach permits to view them in a unified framework, and to obtain them with less effort. We also derive interesting new approximability results for STA, GSMPs and STPNs.Comment: 77 page
    • …
    corecore