195 research outputs found

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    The complexity of Boolean surjective general-valued CSPs

    Full text link
    Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a (QâˆȘ{∞})(\mathbb{Q}\cup\{\infty\})-valued objective function given as a sum of fixed-arity functions. In Boolean surjective VCSPs, variables take on labels from D={0,1}D=\{0,1\} and an optimal assignment is required to use both labels from DD. Examples include the classical global Min-Cut problem in graphs and the Minimum Distance problem studied in coding theory. We establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs with respect to exact solvability. Our work generalises the dichotomy for {0,∞}\{0,\infty\}-valued constraint languages (corresponding to surjective decision CSPs) obtained by Creignou and H\'ebrard. For the maximisation problem of Q≄0\mathbb{Q}_{\geq 0}-valued surjective VCSPs, we also establish a dichotomy theorem with respect to approximability. Unlike in the case of Boolean surjective (decision) CSPs, there appears a novel tractable class of languages that is trivial in the non-surjective setting. This newly discovered tractable class has an interesting mathematical structure related to downsets and upsets. Our main contribution is identifying this class and proving that it lies on the borderline of tractability. A crucial part of our proof is a polynomial-time algorithm for enumerating all near-optimal solutions to a generalised Min-Cut problem, which might be of independent interest.Comment: v5: small corrections and improved presentatio

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:Dm→QâˆȘ{∞}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP⁡(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP⁡(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP⁡(Γ)\operatorname{VCSP}(\Gamma)

    The Complexity of Valued Constraint Satisfaction Problems in a Nutshell

    No full text
    National audienceThe valued constraint satisfaction problem was introduced by Schiex et al. [23] as a unifying framework for studying constraint programming with soft constraints. A systematic worst-case complexity theoretical investigation of this problem was initiated by Cohen et al. [4], building on ideas from the successful classi cation programme for the ordinary constraint satisfaction problem. In addition to the decision problem for constraint satisfaction, this framework also captures problems as varied as Max CSP and integer programming with bounded domains. This paper is intended to give a quick introduction to the questions, the main results, and the current state of the complexity classi cation of valued constraint satisfaction problems. Two special cases are looked at in some detail : the classi cation for the Boolean domain and the less well-understood case of Max CSP. Some recent results for general constraint languages are also reviewed, as well as the connection to the very active study of approximation algorithms for Max CSP

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs
    • 

    corecore