8 research outputs found

    Covering Problems via Structural Approaches

    Get PDF
    The minimum set cover problem is, without question, among the most ubiquitous and well-studied problems in computer science. Its theoretical hardness has been fully characterized--logarithmic approximability has been established, and no sublogarithmic approximation exists unless P=NP. However, the gap between real-world instances and the theoretical worst case is often immense--many covering problems of practical relevance admit much better approximations, or even solvability in polynomial time. Simple combinatorial or geometric structure can often be exploited to obtain improved algorithms on a problem-by-problem basis, but there is no general method of determining the extent to which this is possible. In this thesis, we aim to shed light on the relationship between the structure and the hardness of covering problems. We discuss several measures of structural complexity of set cover instances and prove new algorithmic and hardness results linking the approximability of a set cover problem to its underlying structure. In particular, we provide: - An APX-hardness proof for a wide family of problems that encode a simple covering problem known as Special-3SC. - A class of polynomial dynamic programming algorithms for a group of weighted geometric set cover problems having simple structure. - A simplified quasi-uniform sampling algorithm that yields improved approximations for weighted covering problems having low cell complexity or geometric union complexity. - Applications of the above to various capacitated covering problems via linear programming strengthening and rounding. In total, we obtain new results for dozens of covering problems exhibiting geometric or combinatorial structure. We tabulate these problems and classify them according to their approximability

    Randomized approximation algorithms : facility location, phylogenetic networks, Nash equilibria

    Get PDF
    Despite a great effort, researchers are unable to find efficient algorithms for a number of natural computational problems. Typically, it is possible to emphasize the hardness of such problems by proving that they are at least as hard as a number of other problems. In the language of computational complexity it means proving that the problem is complete for a certain class of problems. For optimization problems, we may consider to relax the requirement of the outcome to be optimal and accept an approximate (i.e., close to optimal) solution. For many of the problems that are hard to solve optimally, it is actually possible to efficiently find close to optimal solutions. In this thesis, we study algorithms for computing such approximate solutions

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Approximability and parameterized complexity of multicover by c-intervals

    No full text
    A c-interval is the disjoint union of c intervals over N. The c-Interval Multicover problem is the special case of Set Multicover where all sets available for covering are c-intervals. We strengthen known APX-hardness results for c-Interval Multicover, show W[1]-hardness when parameterized by the solution size, and present fixed-parameter algorithms for alternative parameterizations. Keywords: Algorithms; NP-hard problems; APX-hardness; Fixed-parameter tractability; W[1]-hardness; Set cove
    corecore