64 research outputs found

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Diameter Minimization by Shortcutting with Degree Constraints

    Full text link
    We consider the problem of adding a fixed number of new edges to an undirected graph in order to minimize the diameter of the augmented graph, and under the constraint that the number of edges added for each vertex is bounded by an integer. The problem is motivated by network-design applications, where we want to minimize the worst case communication in the network without excessively increasing the degree of any single vertex, so as to avoid additional overload. We present three algorithms for this task, each with their own merits. The special case of a matching augmentation, when every vertex can be incident to at most one new edge, is of particular interest, for which we show an inapproximability result, and provide bounds on the smallest achievable diameter when these edges are added to a path. Finally, we empirically evaluate and compare our algorithms on several real-life networks of varying types.Comment: A shorter version of this work has been accepted at the IEEE ICDM 2022 conferenc

    Some results on more flexible versions of Graph Motif

    Full text link
    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif: one where the size of the solution is maximized, the other when the number of substitutions of colors to obtain the motif from the solution is minimized. We also study a decision version of Graph Motif where the connectivity constraint is replaced by the well known notion of graph modularity. While the problem remains NP-complete, it allows algorithms in FPT for biologically relevant parameterizations

    On Approximating Four Covering and Packing Problems

    Get PDF
    In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from full-sibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their approximability properties differ considerably. Our inapproximability constant for the triangle packing problem improves upon the previous results; this is done by directly transforming the inapproximability gap of Haastad for the problem of maximizing the number of satisfied equations for a set of equations over GF(2) and is interesting in its own right. Our approximability results on the full siblings reconstruction problems answers questions originally posed by Berger-Wolf et al. and our results on the maximum profit coverage problem provides almost matching upper and lower bounds on the approximation ratio, answering a question posed by Hassin and Or.Comment: 25 page

    Approximability of (Simultaneous) Class Cover for Boxes

    Full text link
    Bereg et al. (2012) introduced the Boxes Class Cover problem, which has its roots in classification and clustering applications: Given a set of n points in the plane, each colored red or blue, find the smallest cardinality set of axis-aligned boxes whose union covers the red points without covering any blue point. In this paper we give an alternative proof of APX-hardness for this problem, which also yields an explicit lower bound on its approximability. Our proof also directly applies when restricted to sets of points in general position and to the case where so-called half-strips are considered instead of boxes, which is a new result. We also introduce a symmetric variant of this problem, which we call Simultaneous Boxes Class Cover and can be stated as follows: Given a set S of n points in the plane, each colored red or blue, find the smallest cardinality set of axis-aligned boxes which together cover S such that all boxes cover only points of the same color and no box covering a red point intersects a box covering a blue point. We show that this problem is also APX-hard and give a polynomial-time constant-factor approximation algorithm

    Overlapping and Robust Edge-Colored Clustering in Hypergraphs

    Full text link
    A recent trend in data mining has explored (hyper)graph clustering algorithms for data with categorical relationship types. Such algorithms have applications in the analysis of social, co-authorship, and protein interaction networks, to name a few. Many such applications naturally have some overlap between clusters, a nuance which is missing from current combinatorial models. Additionally, existing models lack a mechanism for handling noise in datasets. We address these concerns by generalizing Edge-Colored Clustering, a recent framework for categorical clustering of hypergraphs. Our generalizations allow for a budgeted number of either (a) overlapping cluster assignments or (b) node deletions. For each new model we present a greedy algorithm which approximately minimizes an edge mistake objective, as well as bicriteria approximations where the second approximation factor is on the budget. Additionally, we address the parameterized complexity of each problem, providing FPT algorithms and hardness results

    Minimum d-dimensional arrangement with fixed points

    Full text link
    In the Minimum dd-Dimensional Arrangement Problem (d-dimAP) we are given a graph with edge weights, and the goal is to find a 1-1 map of the vertices into Zd\mathbb{Z}^d (for some fixed dimension d1d\geq 1) minimizing the total weighted stretch of the edges. This problem arises in VLSI placement and chip design. Motivated by these applications, we consider a generalization of d-dimAP, where the positions of some of the vertices (pins) is fixed and specified as part of the input. We are asked to extend this partial map to a map of all the vertices, again minimizing the weighted stretch of edges. This generalization, which we refer to as d-dimAP+, arises naturally in these application domains (since it can capture blocked-off parts of the board, or the requirement of power-carrying pins to be in certain locations, etc.). Perhaps surprisingly, very little is known about this problem from an approximation viewpoint. For dimension d=2d=2, we obtain an O(k1/2logn)O(k^{1/2} \cdot \log n)-approximation algorithm, based on a strengthening of the spreading-metric LP for 2-dimAP. The integrality gap for this LP is shown to be Ω(k1/4)\Omega(k^{1/4}). We also show that it is NP-hard to approximate 2-dimAP+ within a factor better than \Omega(k^{1/4-\eps}). We also consider a (conceptually harder, but practically even more interesting) variant of 2-dimAP+, where the target space is the grid Zn×Zn\mathbb{Z}_{\sqrt{n}} \times \mathbb{Z}_{\sqrt{n}}, instead of the entire integer lattice Z2\mathbb{Z}^2. For this problem, we obtain a O(klog2n)O(k \cdot \log^2{n})-approximation using the same LP relaxation. We complement this upper bound by showing an integrality gap of Ω(k1/2)\Omega(k^{1/2}), and an \Omega(k^{1/2-\eps})-inapproximability result. Our results naturally extend to the case of arbitrary fixed target dimension d1d\geq 1

    Matroid and Knapsack Center Problems

    Full text link
    In the classic kk-center problem, we are given a metric graph, and the objective is to open kk nodes as centers such that the maximum distance from any vertex to its closest center is minimized. In this paper, we consider two important generalizations of kk-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows: 1. We consider the matroid center problem in which the centers are required to form an independent set of a given matroid. We show this problem is NP-hard even on a line. We present a 3-approximation algorithm for the problem on general metrics. We also consider the outlier version of the problem where a given number of vertices can be excluded as the outliers from the solution. We present a 7-approximation for the outlier version. 2. We consider the (multi-)knapsack center problem in which the centers are required to satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem with a single knapsack constraint admits a 3-approximation. However, when there are at least two knapsack constraints, we show this problem is not approximable at all. To complement the hardness result, we present a polynomial time algorithm that gives a 3-approximate solution such that one knapsack constraint is satisfied and the others may be violated by at most a factor of 1+ϵ1+\epsilon. We also obtain a 3-approximation for the outlier version that may violate the knapsack constraint by 1+ϵ1+\epsilon.Comment: A preliminary version of this paper is accepted to IPCO 201
    corecore