3,819 research outputs found

    Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks

    Full text link
    Automatically assessing emotional valence in human speech has historically been a difficult task for machine learning algorithms. The subtle changes in the voice of the speaker that are indicative of positive or negative emotional states are often "overshadowed" by voice characteristics relating to emotional intensity or emotional activation. In this work we explore a representation learning approach that automatically derives discriminative representations of emotional speech. In particular, we investigate two machine learning strategies to improve classifier performance: (1) utilization of unlabeled data using a deep convolutional generative adversarial network (DCGAN), and (2) multitask learning. Within our extensive experiments we leverage a multitask annotated emotional corpus as well as a large unlabeled meeting corpus (around 100 hours). Our speaker-independent classification experiments show that in particular the use of unlabeled data in our investigations improves performance of the classifiers and both fully supervised baseline approaches are outperformed considerably. We improve the classification of emotional valence on a discrete 5-point scale to 43.88% and on a 3-point scale to 49.80%, which is competitive to state-of-the-art performance

    Censored and Fair Universal Representations using Generative Adversarial Models

    Full text link
    We present a data-driven framework for learning \textit{censored and fair universal representations} (CFUR) that ensure statistical fairness guarantees for all downstream learning tasks that may not be known \textit{a priori}. Our framework leverages recent advancements in adversarial learning to allow a data holder to learn censored and fair representations that decouple a set of sensitive attributes from the rest of the dataset. The resulting problem of finding the optimal randomizing mechanism with specific fairness/censoring guarantees is formulated as a constrained minimax game between an encoder and an adversary where the constraint ensures a measure of usefulness (utility) of the representation. We show that for appropriately chosen adversarial loss functions, our framework enables defining demographic parity for fair representations and also clarifies {the optimal adversarial strategy against strong information-theoretic adversaries}. We evaluate the performance of our proposed framework on multi-dimensional Gaussian mixture models and publicly datasets including the UCI Census, GENKI, Human Activity Recognition (HAR), and the UTKFace. Our experimental results show that multiple sensitive features can be effectively censored while ensuring accuracy for several \textit{a priori} unknown downstream tasks. Finally, our results also make precise the tradeoff between censoring and fidelity for the representation as well as the fairness-utility tradeoffs for downstream tasks.Comment: 45 pages, 23 Figures. arXiv admin note: text overlap with arXiv:1807.0530

    Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation

    Full text link
    Computer vision models learn to perform a task by capturing relevant statistics from training data. It has been shown that models learn spurious age, gender, and race correlations when trained for seemingly unrelated tasks like activity recognition or image captioning. Various mitigation techniques have been presented to prevent models from utilizing or learning such biases. However, there has been little systematic comparison between these techniques. We design a simple but surprisingly effective visual recognition benchmark for studying bias mitigation. Using this benchmark, we provide a thorough analysis of a wide range of techniques. We highlight the shortcomings of popular adversarial training approaches for bias mitigation, propose a simple but similarly effective alternative to the inference-time Reducing Bias Amplification method of Zhao et al., and design a domain-independent training technique that outperforms all other methods. Finally, we validate our findings on the attribute classification task in the CelebA dataset, where attribute presence is known to be correlated with the gender of people in the image, and demonstrate that the proposed technique is effective at mitigating real-world gender bias.Comment: To appear in CVPR 202

    Robust and Fair Machine Learning under Distribution Shift

    Get PDF
    Machine learning algorithms have been widely used in real world applications. The development of these techniques has brought huge benefits for many AI-related tasks, such as natural language processing, image classification, video analysis, and so forth. In traditional machine learning algorithms, we usually assume that the training data and test data are independently and identically distributed (iid), indicating that the model learned from the training data can be well applied to the test data with good prediction performance. However, this assumption is quite restrictive because the distribution shift can exist from the training data to the test data in many scenarios. In addition, the goal of traditional machine learning model is to maximize the prediction performance, e.g., accuracy, based on the historical training data, which may tend to make unfair predictions for some particular individual or groups. In the literature, researchers either focus on building robust machine learning models under data distribution shift or achieving fairness separately, without considering to solve them simultaneously. The goal of this dissertation is to solve the above challenging issues in fair machine learning under distribution shift. We start from building an agnostic fair framework in federated learning as the data distribution is more diversified and distribution shift exists from the training data to the test data. Then we build a robust framework to address the sample selection bias for fair classification. Next we solve the sample selection bias issue for fair regression. Finally, we propose an adversarial framework to build a personalized model in the distributed setting where the distribution shift exists between different users. In this dissertation, we conduct the following research for fair machine learning under distribution shift. • We develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution; • We propose a framework for robust and fair learning under sample selection bias; • We develop a framework for fair regression under sample selection bias when dependent variable values of a set of samples from the training data are missing as a result of another hidden process; • We propose a learning framework that allows an individual user to build a personalized model in a distributed setting, where the distribution shift exists among different users

    Analysing Fairness of Privacy-Utility Mobility Models

    Full text link
    Preserving the individuals' privacy in sharing spatial-temporal datasets is critical to prevent re-identification attacks based on unique trajectories. Existing privacy techniques tend to propose ideal privacy-utility tradeoffs, however, largely ignore the fairness implications of mobility models and whether such techniques perform equally for different groups of users. The quantification between fairness and privacy-aware models is still unclear and there barely exists any defined sets of metrics for measuring fairness in the spatial-temporal context. In this work, we define a set of fairness metrics designed explicitly for human mobility, based on structural similarity and entropy of the trajectories. Under these definitions, we examine the fairness of two state-of-the-art privacy-preserving models that rely on GAN and representation learning to reduce the re-identification rate of users for data sharing. Our results show that while both models guarantee group fairness in terms of demographic parity, they violate individual fairness criteria, indicating that users with highly similar trajectories receive disparate privacy gain. We conclude that the tension between the re-identification task and individual fairness needs to be considered for future spatial-temporal data analysis and modelling to achieve a privacy-preserving fairness-aware setting
    • …
    corecore