319 research outputs found

    Discovery and composition of web services using artificial intelligence planning and web service modeling ontology

    Get PDF
    In today’s Web environment, Web services are the preferred standards-based way to realize Service Oriented Architecture (SOA) computing. A problem that has become one of the recent critical issues is automated discovery and composition of Semantic Web services. A number of approaches have been presented to solve the problem. However, most of these approaches only consider discovery or composition of Web services but not both. In this study, an effective approach called AIMO, based on Artificial Intelligence (AI) planning, Web Service Modeling Ontology (WSMO), and Semantic Web has been proposed to tackle the problem. The main purpose of this study is to investigate and develop a novel approach for automated Web service discovery and composition. In this case, a comparative evaluation of state-of-the-art approaches for Web service composition approaches has been done and the strengths and weaknesses of those approaches have been discussed. Moreover a translator for interaction between WSMO and AI-planning based on Description Logics has been proposed. In addition, some parts of AIMO architecture have been tested on a practical case study, and the results based on the experimental validation demonstrate that AIMO provides an effective and applicable solution. AIMO continues to support loose coupling paradigm of SOA by separating the discovery from the composition of Web services

    Semantic business process management: a vision towards using semantic web services for business process management

    Get PDF
    Business process management (BPM) is the approach to manage the execution of IT-supported business operations from a business expert's view rather than from a technical perspective. However, the degree of mechanization in BPM is still very limited, creating inertia in the necessary evolution and dynamics of business processes, and BPM does not provide a truly unified view on the process space of an organization. We trace back the problem of mechanization of BPM to an ontological one, i.e. the lack of machine-accessible semantics, and argue that the modeling constructs of semantic Web services frameworks, especially WSMO, are a natural fit to creating such a representation. As a consequence, we propose to combine SWS and BPM and create one consolidated technology, which we call semantic business process management (SBPM

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    A Policy Specification Language for Composite Services

    Get PDF
    Creating complex systems by combining smaller component services is one of the fundamental concepts in Service Oriented Architecture. Service compositions are built by combining loosely coupled services that are, usually, offered and operated by different service providers. While this approach offers several benefits, it makes the implementation and representation of the security requirements difficult. This paper reviews several requirement specification languages and analyses their suitability for composite services. A set of requirements is identified and a comparison between different specification languages is presented along with some conclusion on the suitability of each language in expressing security requirements for composite services

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    A semantical framework for the orchestration and choreography of web services

    Get PDF
    Web Services are software services that can be advertised by providers and invoked by customers using Web technologies. This concept is currently carried further to address the composition of individual services through orchestration and choreography to services processes that communicate and interact with each other. We propose an ontology framework for these Web service processes that provides techniques for their description, matching, and composition. A description logic-based knowledge representation and reasoning framework provides the foundations. We will base this ontological framework on an operational model of service process behaviour and composition

    Business integration models in the context of web services.

    Get PDF
    E-commerce development and applications have been bringing the Internet to business and marketing and reforming our current business styles and processes. The rapid development of the Web, in particular, the introduction of the semantic web and web service technologies, enables business processes, modeling and management to enter an entirely new stage. Traditional web based business data and transactions can now be analyzed, extracted and modeled to discover new business rules and to form new business strategies, let alone mining the business data in order to classify customers or products. In this paper, we investigate and analyze the business integration models in the context of web services using a micro-payment system because a micro-payment system is considered to be a service intensive activity, where many payment tasks involve different forms of services, such as payment method selection for buyers, security support software, product price comparison, etc. We will use the micro-payment case to discuss and illustrate how the web services approaches support and transform the business process and integration model.
    corecore