93,614 research outputs found

    Grounding Language for Transfer in Deep Reinforcement Learning

    Full text link
    In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.Comment: JAIR 201

    Prediction of intent in robotics and multi-agent systems.

    Get PDF
    Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches

    Learning Latent Super-Events to Detect Multiple Activities in Videos

    Full text link
    In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enable the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.Comment: CVPR 201

    Dissecting action sports studies: Past, present, and beyond

    Get PDF
    The term “action sports” broadly refers to a wide range of mostly individualized activities such as BMX, kite-surfing, skateboarding, surfing, and snowboarding that differed – at least in their early phases of development – from traditional rule-bound, competitive, regulated Western “achievement” sport cultures ( Booth and Thorpe, 2007 ; Kusz, 2007a ; Wheaton 2004, 2010 ). Various categorizations have been used to describe these activities, including extreme, lifestyle, and alternative sports. In this chapter, however, the term action sports is used as it is currently the preferred term among committed participants and industry members in North America and Australasia (many of whom reject the overly commercialized “extreme” moniker imposed upon them by transnational media and mainstream sponsors during the mid- and late 1990s). Many action sports gained popularity during the new leisure trends of the 1960s and 1970s and increasingly attracted alternative youth, who appropriated these activities and infused them with a set of hedonistic and carefree philosophies and subcultural styles ( Booth and Thorpe, 2007 ; Thorpe and Wheaton, 2011a ; Wheaton, 2010 )

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore