3,473 research outputs found

    Specification of the PERFoRM architecture for the seamless production system reconfiguration

    Get PDF
    The world is assisting to the fourth industrial revolution, with several domains of science and technology being strongly developed and, specially, being integrated with each other, allowing to build evolvable complex systems. Data digitization, big-data analysis, distributed control, Industrial Internet of Things, Cyber-Physical Systems and self-organization, amongst others, are playing an important role in this journey. This paper considers the best practices from previous successful European projects addressing distributed control systems to develop an innovative architecture that can be industrially deployed. For this purpose, a particular design process has to be addressed in order to consider the requirements and functionalities from various use cases. To investigate the known practices, four use cases are enlighted in this paper, which cover a wide spectrum of the European industrial force, as well as industrial standards to support a smooth migration from traditional systems to the emergent distributed systems.info:eu-repo/semantics/publishedVersio

    Approach to Adapt a Legacy Manufacturing System Into the IoT Paradigm

    Get PDF
    This work has been supported by Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, by Uninova-CTS research unit and by national funds through FCT -Fundação para a Ciência e a Tecnologia within the research unit CTS - Centro de Tecnologia e Sistemas (project UID/EEA/00066/2013). The authors would like to thank all the institutions.Enterprises are adopting the Internet of Things paradigm as a strategy to improve competitiveness. But enterprises also need to rely on their legacy systems, which are of vital importance to them and normally difficult to reconfigure or modify, their mere replacement being usually not affordable. These systems constitute, therefore, barriers to agility and competitiveness, raising the need to develop cost-effective ways for IoT adaptation. An approach for adapting legacy manufacturing systems into the IoT realm is proposed in this research. The methodology is twofold: an adaptation board is firstly designed to provide IoT connectivity, allowing to remotely invoke the “legacy” functionality as services. Then, the board itself can leverage the legacy system by developing additional functionalities inside it, as the update process is usually triggered by the need of new functionality from these systems. An experiment, which consists of adapting to IoT a small distribution line that is controlled by an aged Programmable Logic Controller, is developed to illustrate how straightforward, affordable and cost effective the adaptation approach is, allowing to holistically achieve a new system with more sophisticated functionality.publishersversionpublishe
    corecore