19,172 research outputs found

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    A Framework for XML-based Integration of Data, Visualization and Analysis in a Biomedical Domain

    Get PDF
    Biomedical data are becoming increasingly complex and heterogeneous in nature. The data are stored in distributed information systems, using a variety of data models, and are processed by increasingly more complex tools that analyze and visualize them. We present in this paper our framework for integrating biomedical research data and tools into a unique Web front end. Our framework is applied to the University of Washingtonā€™s Human Brain Project. Speciļ¬cally, we present solutions to four integration tasks: deļ¬nition of complex mappings from relational sources to XML, distributed XQuery processing, generation of heterogeneous output formats, and the integration of heterogeneous data visualization and analysis tools

    Electronic health records

    Get PDF

    An agent-based architecture for managing the provision of community care - the INCA (Intelligent Community Alarm) experience

    Get PDF
    Community Care is an area that requires extensive cooperation between independent agencies, each of which needs to meet its own objectives and targets. None are engaged solely in the delivery of community care, and need to integrate the service with their other responsibilities in a coherent and efficient manner. Agent technology provides the means by which effective cooperation can take place without compromising the essential security of both the client and the agencies involved as the appropriate set of responses can be generated through negotiation between the parties without the need for access to the main information repositories that would be necessary with conventional collaboration models. The autonomous nature of agents also means that a variety of agents can cooperate together with various local capabilities, so long as they conform to the relevant messaging requirements. This allows a variety of agents, with capabilities tailored to the carers to which they are attached to be developed so that cost-effective solutions can be provided. </p
    • ā€¦
    corecore