145 research outputs found

    A hierarchical group model for programming sensor networks

    Get PDF
    A hierarchical group model that decouples computation from hardware can characterize and aid in the construction of sensor network software with minimal overhead. Future sensor network applications will move beyond static, homogeneous deployments to include dynamic, heterogeneous elements. These sensor networks will also gain new users, including casual users who will expect intuitive interfaces to interact with sensor networks. To address these challenges, a new computational model and a system implementing the model are presented. This model ensures that computations can be readily reassigned as sensor nodes are introduced or removed. The model includes methods for communication to accommodate these dynamic elements. This dissertation presents a detailed description and design of a computational model that resolves these challenges using a hierarchical group mechanism. In this model, computation is tasked to logical groups and split into collective and local components that communicate hierarchically. Local computation is primarily used for data production and publishes data to the collective computation. Similarly, collective computation is primarily used for data aggregation and pushes results back to the local computation. Finally, the model includes data-processing functions interposed between local and collective functions that are responsible for data conversion. This dissertation also presents implementations and applications of the model. Implementations include Kensho, a C-based implementation of the hierarchical group model, that can be used for a variety of user applications. Another implementation, Tables, presents a spreadsheet-inspired view of the sensor network that takes advantage of hierarchical groups for both computation and communication. Users are able to specify both local and collective functions that execute on the sensor network via the spreadsheet interface. Applications of the model are also explored. One application, FUSN, provides a set of methods for constructing filesystem-based interfaces for sensor networks. This demonstrates the general applicability of the model as applied to sensor network programming and management interfaces. Finally, the model is applied to a novel privacy algorithm to demonstrate that the model isn\u27t strictly limited to programming interfaces

    PAgIoT - Privacy-preserving aggregation protocol for internet of things

    Get PDF
    Modern society highly relies on the use of cyberspace to perform a huge variety of activities, such as social networking or e-commerce, and new technologies are continuously emerging. As such, computer systems may store a huge amount of information, which makes data analysis and storage a challenge. Information aggregation and correlation are two basic mechanisms to reduce the problem size, for example by filtering out redundant data or grouping similar one. These processes require high processing capabilities, and thus their application in Internet of Things (IoT) scenarios is not straightforward due to resource constraints. Furthermore, privacy issues may arise when the data at stake is personal. In this paper we propose PAgIoT, a Privacy-preserving Aggregation protocol suitable for IoT settings. It enables multi-attribute aggregation for groups of entities while allowing for privacy-preserving value correlation. Results show that PAgIoT is resistant to security attacks, it outperforms existing proposals that provide with the same security features, and it is feasible in resource-constrained devices and for aggregation of up to 10 attributes in big networks.This work was partially supported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and the CAM grant S2013/ICE-3095 CIBERDINE-CM (CIBERDINE: Cybersecurity, Data, and Risks) funded by the Autonomous Community of Madrid and co-funded by European funds

    Average Load Distance (ALD) radio communication model for wireless sensor networks

    Get PDF
    The lifetime of network is one of the most critical issues that have to be considered in the application of wireless sensor networks. The network nodes are battery powered and remain operational as long as they can transmit the sensed data to the processing (sink) node. The main energy consumption of sensor node can be attributed to the task of data transmission to sink node or cluster head. Hence, conserving energy in transmitting data shall maximize functional life of the wireless networks. In this paper we proposed a computationally efficient Average Load Distance (ALD) communication model for forwarding data from sensor to the cluster head. Experiment results indicate that the proposed model can be up to 88% more efficient over direct mode of communication, in respect of per-round maximum energy consumption. An application study shows that ALD can save up to 89% of wireless sensor networks operational cost when compared to direct mode transmission

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Minimizing residential distribution system operating costs through intelligently scheduled plug-in hybrid electric vehicle charging

    Get PDF
    Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesďż˝ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Mobile Network and Cloud Based Privacy-Preserving Data Aggregation and Processing

    Get PDF
    The emerging technology of mobile devices and cloud computing has brought a new and efficient way for data to be collected, processed and stored by mobile users. With improved specifications of mobile devices and various mobile applications provided by cloud servers, mobile users can enjoy tremendous advantages to manage their daily life through those applications instantaneously, conveniently and productively. However, using such applications may lead to the exposure of user data to unauthorised access when the data is outsourced for processing and storing purposes. Furthermore, such a setting raises the privacy breach and security issue to mobile users. As a result, mobile users would be reluctant to accept those applications without any guarantee on the safety of their data. The recent breakthrough of Fully Homomorphic Encryption (FHE) has brought a new solution for data processing in a secure motion. Several variants and improvements on the existing methods have been developed due to efficiency problems. Experience of such problems has led us to explore two areas of studies, Mobile Sensing Systems (MSS) and Mobile Cloud Computing (MCC). In MSS, the functionality of smartphones has been extended to sense and aggregate surrounding data for processing by an Aggregation Server (AS) that may be operated by a Cloud Service Provider (CSP). On the other hand, MCC allows resource-constraint devices like smartphones to fully leverage services provided by powerful and massive servers of CSPs for data processing. To support the above two application scenarios, this thesis proposes two novel schemes: an Accountable Privacy-preserving Data Aggregation (APDA) scheme and a Lightweight Homomorphic Encryption (LHE) scheme. MSS is a kind of WSNs, which implements a data aggregation approach for saving the battery lifetime of mobile devices. Furthermore, such an approach could improve the security of the outsourced data by mixing the data prior to be transmitted to an AS, so as to prevent the collusion between mobile users and the AS (or its CSP). The exposure of users’ data to other mobile users leads to a privacy breach and existing methods on preserving users’ privacy only provide an integrity check on the aggregated data without being able to identify any misbehaved nodes once the integrity check has failed. Thus, to overcome such problems, our first scheme APDA is proposed to efficiently preserve privacy and support accountability of mobile users during the data aggregation. Furthermore, APDA is designed with three versions to provide balanced solutions in terms of misbehaved node detection and data aggregation efficiency for different application scenarios. In addition, the successfully aggregated data also needs to be accompanied by some summary information based on necessary additive and non-additive functions. To preserve the privacy of mobile users, such summary could be executed by implementing existing privacy-preserving data aggregation techniques. Nevertheless, those techniques have limitations in terms of applicability, efficiency and functionality. Thus, our APDA has been extended to allow maximal value finding to be computed on the ciphertext data so as to preserve user privacy with good efficiency. Furthermore, such a solution could also be developed for other comparative operations like Average, Percentile and Histogram. Three versions of Maximal value finding (Max) are introduced and analysed in order to differentiate their efficiency and capability to determine the maximum value in a privacy-preserving manner. Moreover, the formal security proof and extensive performance evaluation of our proposed schemes demonstrate that APDA and its extended version can achieve stronger security with an optimised efficiency advantage over the state-of-the-art in terms of both computational and communication overheads. In the MCC environment, the new LHE scheme is proposed with a significant difference so as to allow arbitrary functions to be executed on ciphertext data. Such a scheme will enable rich-mobile applications provided by CSPs to be leveraged by resource-constraint devices in a privacy-preserving manner. The scheme works well as long as noise (a random number attached to the plaintext for security reasons) is less than the encryption key, which makes it flexible. The flexibility of the key size enables the scheme to incorporate with any computation functions in order to produce an accurate result. In addition, this scheme encrypts integers rather than individual bits so as to improve the scheme’s efficiency. With a proposed process that allows three or more parties to communicate securely, this scheme is suited to the MCC environment due to its lightweight property and strong security. Furthermore, the efficacy and efficiency of this scheme are thoroughly evaluated and compared with other schemes. The result shows that this scheme can achieve stronger security under a reasonable cost

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe
    • …
    corecore