6,736 research outputs found

    Steganography in inactive frames of VoIP streams encoded by source codec

    Get PDF
    This paper describes a novel high capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1 source codec, which is used extensively in Voice over Internet Protocol (VoIP). This study reveals that, contrary to existing thoughts, the inactive frames of VoIP streams are more suitable for data embedding than the active frames of the streams, that is, steganography in the inactive audio frames attains a larger data embedding capacity than that in the active audio frames under the same imperceptibility. By analysing the concealment of steganography in the inactive frames of low bit rate audio streams encoded by G.723.1 codec with 6.3kbps, the authors propose a new algorithm for steganography in different speech parameters of the inactive frames. Performance evaluation shows embedding data in various speech parameters led to different levels of concealment. An improved voice activity detection algorithm is suggested for detecting inactive audio frames taking into packet loss account. Experimental results show our proposed steganography algorithm not only achieved perfect imperceptibility but also gained a high data embedding rate up to 101 bits/frame, indicating that the data embedding capacity of the proposed algorithm is very much larger than those of previously suggested algorithms

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Methods of covert communication of speech signals based on a bio-inspired principle

    Get PDF
    This work presents two speech hiding methods based on a bio-inspired concept known as the ability of adaptation of speech signals. A cryptographic model uses the adaptation to transform a secret message to a non-sensitive target speech signal, and then, the scrambled speech signal is an intelligible signal. The residual intelligibility is extremely low and it is appropriate to transmit secure speech signals. On the other hand, in a steganographic model, the adapted speech signal is hidden into a host signal by using indirect substitution or direct substitution. In the first case, the scheme is known as Efficient Wavelet Masking (EWM), and in the second case, it is known as improved-EWM (iEWM). While EWM demonstrated to be highly statistical transparent, the second one, iEWM, demonstrated to be highly robust against signal manipulations. Finally, with the purpose to transmit secure speech signals in real-time operation, a hardware-based scheme is proposedEsta tesis presenta dos métodos de comunicación encubierta de señales de voz utilizando un concepto bio-inspirado, conocido como la “habilidad de adaptación de señales de voz”. El modelo de criptografía utiliza la adaptación para transformar un mensaje secreto a una señal de voz no confidencial, obteniendo una señal de voz encriptada legible. Este método es apropiado para transmitir señales de voz seguras porque en la señal encriptada no quedan rastros del mensaje secreto original. En el caso de esteganografía, la señal de voz adaptada se oculta en una señal de voz huésped, utilizando sustitución directa o indirecta. En el primer caso el esquema se denomina EWM y en el segundo caso iEWM. EWM demostró ser altamente transparente, mientras que iEWM demostró ser altamente robusto contra manipulaciones de señal. Finalmente, con el propósito de transmitir señales de voz seguras en tiempo real, se propone un esquema para dispositivos hardware

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Steganography Based on Random Pixel Selection For Efficient Data Hiding

    Get PDF
    ABSTRACT In this paper we present a novel steganographic approach to increase the security of the data hidden in a cover RGB image. Here we have used LSB insertion method that hides the bits of a secret message into the least significant bit in the red plane of the pixels within a cover image. The pixels are selected by using a random number generator. It is commonly seen that the changes in the LSB of the colour cannot be detected due to noise that is presents in the digital images by the human visual system. The central idea of the proposed method is to increase security, so the data is embedded only into the red plane of the image. We have also explained the method that extracts the hidden message at the receiving end using a key. The main objective of the paper is to combine both the preferences and the resistance to the visual and statistical attacks for a large amount of the data to be hidden in a cover image

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen
    corecore