14,296 research outputs found

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data

    Get PDF
    Progressive loss of the field of vision is characteristic of a number of eye diseases such as glaucoma, a leading cause of irreversible blindness in the world. Recently, there has been an explosion in the amount of data being stored on patients who suffer from visual deterioration, including visual field (VF) test, retinal image, and frequent intraocular pressure measurements. Like the progression of many biological and medical processes, VF progression is inherently temporal in nature. However, many datasets associated with the study of such processes are often cross sectional and the time dimension is not measured due to the expensive nature of such studies. In this paper, we address this issue by developing a method to build artificial time series, which we call pseudo time series from cross-sectional data. This involves building trajectories through all of the data that can then, in turn, be used to build temporal models for forecasting (which would otherwise be impossible without longitudinal data). Glaucoma, like many diseases, is a family of conditions and it is, therefore, likely that there will be a number of key trajectories that are important in understanding the disease. In order to deal with such situations, we extend the idea of pseudo time series by using resampling techniques to build multiple sequences prior to model building. This approach naturally handles outliers and multiple possible disease trajectories. We demonstrate some key properties of our approach on synthetic data and present very promising results on VF data for predicting glaucoma
    corecore