208 research outputs found

    A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) has been widely analyzed in the literature using several heuristics and meta-heuristics to optimize some qualitative criteria, taking into account different restrictions and constraints. Nevertheless, the subjective opinion of the designer (Decision Maker, DM) has never been considered along with the quantitative criteria and restrictions. This work proposes a novel approach for the UA-FLP based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which combines the simultaneous consideration of both quantitative and qualitative (DM opinion) features. The algorithm implementation is explained in detail, including the way of jointly considering quantitative and qualitative aspects in the fitness function of the problem. The experimental part of the paper illustrates the effect of including qualitative aspects in UA-FLP problems, considering three different hard UA-FLP instances. Empirical results show that the proposed approach is able to incorporate the DM preferences in the obtained layouts, without affecting much to the quantitative part of the solutions

    A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem

    Get PDF
    This paper proposes a novel approach to address the Unequal Area Facility Layout Problem (UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimization (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure of flexible bays has been selected as effective encoding to represent the facility layouts within the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP cases, considering small, medium and large size categories. The empirical results obtained are compared with previous state of the art algorithms, in order to show the performance of the IMCRO. From this comparison, it can be extracted that both versions of the proposed IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances in all the size categories

    A Hybrid Coral Reefs Optimization – Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) is a relevant optimization problem related to industrial design, that deals with obtaining the most effective allocation of facilities, that make up the rectangular manufacturing plant layout. The UA-FLP is known to be a hard optimization problem, where meta-heuristic approaches are a good option to obtain competitive solutions. Many of these computational approaches, however, usually fall into local optima, and suffer from lack of diversity in their population, mainly due to the huge search spaces and hard fitness landscapes produced by the traditional representation of UA-FLP. To solve these issues, in this paper we propose a novel hybrid meta-heuristic approach, which combines a Coral Reefs Optimization algorithm (CRO) with a Variable Neighborhood Search (VNS) and a new representation for the problem, called Relaxed Flexible Bay Structure (RFBS), which simplifies the encoding and makes its fitness landscape more affordable. Thus, the use of VNS allows more intensive exploitation of the searching space with an affordable computational cost, as well as the RFBS allows better management of the free space into the plant layout. This combined strategy has been tested over a set of UA-FLP instances of different sizes, which have been previously tackled in the literature with alternative meta-heuristics. The tests results show very good performance in all cases

    A Multi-User Interactive Coral Reef Optimization Algorithm for Considering Expert Knowledge in the Unequal Area Facility Layout Problem

    Get PDF
    The problem of Unequal Area Facility Layout Planning (UA-FLP) has been addressed by a large number of approaches considering a set of quantitative criteria. Moreover, more recently, the personal qualitative preferences of an expert designer or decision-maker (DM) have been taken into account too. This article deals with capturing more than a single DM’s personal preferences to obtain a common and collaborative design including the whole set of preferences from all the DMs to obtain more complex, complete, and realistic solutions. To the best of our knowledge, this is the first time that the preferences of more than one expert designer have been considered in the UA-FLP. The new strategy has been implemented on a Coral Reef Optimization (CRO) algorithm using two techniques to acquire the DMs’ evaluations. The first one demands the simultaneous presence of all the DMs, while the second one does not. Both techniques have been tested over three well-known problem instances taken from the literature and the results show that it is possible to obtain sufficient designs capturing all the DMs’ personal preferences and maintaining low values of the quantitative fitness function

    Optimal generation scheduling in hydro-power plants with the Coral Reefs Optimization algorithm

    Get PDF
    Hydro-power plants are able to produce electrical energy in a sustainable way. A known format for producing energy is through generation scheduling, which is a task usually established as a Unit Commitment problem. The challenge in this process is to define the amount of energy that each turbine-generator needs to deliver to the plant, to fulfill the requested electrical dispatch commitment, while coping with the operational restrictions. An optimal generation scheduling for turbine-generators in hydro-power plants can offer a larger amount of energy to be generated with respect to non-optimized schedules, with significantly less water consumption. This work presents an efficient mathematical modelling for generation scheduling in a real hydro-power plant in Brazil. An optimization method based on different versions of the Coral Reefs Optimization algorithm with Substrate Layers (CRO) is proposed as an effective method to tackle this problem.This approach uses different search operators in a single population to refine the search for an optimal scheduling for this problem. We have shown that the solution obtained with the CRO using Gaussian search in exploration is able to produce competitive solutions in terms of energy production. The results obtained show a huge savings of 13.98 billion (liters of water) monthly projected versus the non-optimized scheduling.European CommissionMinisterio de Economía y CompetitividadComunidad de Madri

    Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms

    Get PDF
    Unequal area facility layout problem is an important issue in the design of industrial plants, as well as other fields such as hospitals or schools, among others. While participating in an interactive designing process, the human user is required to evaluate a high number of proposed solutions, which produces them fatigue both mental and physical. In this paper, the use of eye-tracking to estimate user’s evaluations from gaze behavior is investigated. The results show that, after a process of training and data taking, it is possible to obtain a good enough estimation of the user’s evaluations which is independent of the problem and of the users as well. These promising results advice to use eye-tracking as a substitute for the mouse during users’ evaluations

    Optimización de problemas de distribución en planta mediante algoritmos evolutivos

    Get PDF
    Este trabajo de investigación acomete el problema de distribución en planta. De forma resumida, este problema comprende la distribución de los diferentes departamentos que integran una planta industrial de la forma más satisfactoria posible teniendo en cuenta ciertos criterios y restricciones. Dependiendo de las características del problema, pueden originarse multitud de taxonomías o subproblemas de distribución en planta. En esta tesis doctoral, se abordará el problema de distribución en planta de áreas desiguales que ha sido uno de los más estudiados. Para resolver este problema de distribución en planta de áreas desiguales (UAFLP en inglés), han sido utilizadas multitud de propuestas con el objetivo de obtener el diseño más satisfactorio de la planta industrial. En este sentido, los algoritmos evolutivos han sido ampliamente utilizados en la bibliografía. Por otro lado, dentro de los posibles criterios a considerar cuando se resuelve el problema de distribución en planta, el coste de flujo de material ha sido el más empleado, ya que está directamente relacionado con el coste total de una planta industrial. Es por esta razón que esta tesis doctoral pretende resolver el problema de distribución en planta teniendo en cuenta el criterio del coste de flujo de material, con el objetivo de obtener mejores soluciones que las existentes hasta el momento en la bibliografía de referencia. Para ello, se ha empleado una novedosa y reciente metaheurística que se basa en el comportamiento existente en los arrecifes de corales marinos. Esta nueva metaheurística ha sido empleada con mucho éxito en diferentes problemas complejos de optimización, logrando obtener unos resultados muy satisfactorios en diferentes ámbitos y áreas. Este algoritmo de optimización basado en algoritmos de arrecifes de coral ha sido aplicado al problema de distribución en planta de áreas desiguales considerando el coste de flujo de material como criterio de optimización. La aplicación de esta propuesta es una contribución totalmente original al problema de distribución en planta, ya que, hasta el momento no había sido probado en este campo. La propuesta de optimización basada en los arrecifes de coral ha sido probada de forma empírica con multitud de problemas de referencia de la bibliografía de diferente complejidad. Como resultado se ha mejorado las soluciones existentes hasta el momento en la mayoría de los casos probados. Por otro lado, con el objetivo de dar más diversidad a la población y para evitar que el algoritmo caiga en óptimos locales, se ha propuesto una mejora sobre esta metaheurística que se basa en un modelo de islas de arrecifes de coral, lo que permite realizar una paralelización del algoritmo inicial y así, evolucionar diferentes poblaciones de arrecifes de coral al mismo tiempo. Se ha realizado una experimentación empírica con multitud de problemas de referencia de la bibliografía que ha permitido validar este nuevo enfoque bioinspirado, ofreciendo como resultado mejoras sobre las soluciones existentes hasta el momento en referencia a la mayoría de los casos probados (incluso mejores soluciones que las obtenidas por la propuesta inicial de algoritmo de arrecifes de coral). Mediante este nuevo modelo de islas de arrecifes de coral, se consigue también aumentar la diversidad de las soluciones del problema, lo que permite encontrar nuevas soluciones con mejores aptitudes en términos de coste de flujo de material y en menor tiempo de cómputo. Este nuevo modelo de islas de arrecifes de coral, es una nueva metaheurística que ha sido creada en esta investigación y es totalmente original. Ya que hasta ese momento, no existía ninguna propuesta paralelizada del algoritmo de optimización basado en arrecifes de coral. Por lo que, este nuevo modelo ha contribuido de una manera muy considerable en el estado del arte del problema de distribución en planta de áreas desiguales y también en el ámbito de la computación evolutiva y las metaheurísticas.This research work tackles the facility layout problem, in summary, this problem includes the distribution of the different departments that make up an industrial plant in the most satisfactory way possible, taking into account certain criteria y restrictions. Depending on the characteristics of the problem, a multitude of facility layout taxonomies or subproblems can arise. In this doctoral thesis, the unequal area facility layout problem is addressed, which has been one of the most studied in the related references. To solve the unequal area facility layout problem (UAFLP), many proposals have been used to obtain the most satisfactory design of the industrial plant. In this sense, evolutionary algorithms have been the most used in the literature. On the other hand, among the possible criteria to consider when solving the unequal area facility layout problem, the cost of material flow has been the most employed, since it is directly related to the total cost of an industrial plant. This is the reason why this doctoral thesis aims to solve the unequal area facility layout problem taking into account the criterion of the cost of material flow, intending to obtain better solutions than the consequences so far in the reference bibliography. For this, a new y recent metaheuristic has been used that is based on the behaviour existing in the marine coral reefs. This new metaheuristic has been used with great success in different complex optimization problems, achieving very satisfactory results in different fields y areas. This optimization algorithm based on coral algorithms has been applied to the unequal area facility layout problem by considering the cost of material flow as an optimization criterion. The application of this proposal is a totally original contribution to the facility layout problem, since, until now, it had not been tested in this field. The optimization proposal based on coral reefs has been empirically tested with a multitude of bibliographic reference problems of different complexity. As a result, the solutions improved so far have been improved in the references in most of the cases tested. Finally, to give more diversity to the population y to avoid the algorithm falling into local optimums, an improvement has been proposed on this metaheuristic that is based on a model of coral reef islands, which allows parallelization of the initial algorithm y thus, evolve different coral reef populations at the same time. Empirical experimentation with a multitude of bibliographic benchmark problems was carried out to validate this new bioinspired approach, y it has resulted in improvements over the solutions that have existed so far in the references in the majority of cases tested (even better solutions than ones obtained by the initial proposal of the coral reefs optimization algorithm). Through this new model of coral reef islands, it is also possible to increase the diversity of the solutions to the problem, allowing to find new designs with better skills in terms of material flow cost y in less computing time. This new island model of coral reef is a new metaheuristic that has been created in this research y is totally original. Since until then, there was no parallelized proposal for the coral reef-based optimization algorithm. Therefore, this new island model has contributed in a very considerable way in the state of the art of the unequal area facility layout problem, and also, in the evolutionary computation and metaheuristics

    An Application of an Unequal-Area Facilities Layout Problem with Fixed-Shape Facilities

    Get PDF
    The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, a genetic algorithm, which consists of a boundary search heuristic (BSH), a linear program, and a dual simplex method, is developed for an UA-FLP. To test the performance of the proposed technique, several test problems taken from the literature are used in the analysis. The results show that the proposed heuristic performs well with respect to solution quality and computational time

    Cross-entropy boosted CRO-SL for optimal power flow in smart grids

    Get PDF
    Optimal power flow (OPF) is a complex, highly nonlinear, NP-hard optimization problem, in which the goal is to determine the optimal operational parameters of a power-related system (in many cases a type of smart or micro grid) which guarantee an economic and effective power dispatch. In recent years, a number of approaches based on metaheuristics algorithms have been proposed to solve OPF problems. In this paper, we propose the use of the Cross-Entropy (CE) method as a first step depth search operator to assist population-based evolutionary methods in the framework of an OPF problem. Specifically, a new variant of the Coral Reefs Optimization with Substrate Layers algorithm boosted with CE method (CE+CRO-SL) is presented in this work. We have adopted the IEEE 57-Bus System as a test scenario which, by default, has seven thermal generators for power production for the grid. We have modified this system by replacing three thermal generators with renewable source generators, in order to consider a smart grid approach with renewable energy production. The performance of CE+CRO-SL in this particular case study scenario has been compared with that of well-known techniques such as population’s methods CMA-ES and EPSO (both boosted with CE). The results obtained indicate that CE+CRO-SL showed a superior performance than the alternative techniques in terms of efficiency and accuracy. This is justified by its greater exploration capacity, since it has internally operations coming from different heuristics, thus surpassing the performance of classic methods. Moreover, in a projection analysis, the CE+CRO-SL provides a profit of millions of dollars per month in all cases tested considering the modified version of the IEEE 57-Bus smart grid system

    Evolutionary Computation Strategies applied to the UA-FLP

    Get PDF
    En la presente tesis doctoral se desarrollan dos aproximaciones distintas al problema de distribución en planta de áreas desiguales (UA-FLP). En primer lugar, se trata de incorporar el conocimiento del diseñador experto a los algoritmos clásicos de optimización, de forma que, además de buscar buenas soluciones desde el punto de vista cuantitativo, por ejemplo minimizando el flujo de materiales, se introduzca la posibilidad de que el diseñador aporte su experiencia y preferencias personales. Para facilitar la intervención humana en el proceso de búsqueda de soluciones, se ha utilizado un procedimiento de clustering, el cual permite clasificar las soluciones subyacentes en el conjunto de búsqueda, de forma que se presente al diseñador un número suficientemente representativo y, a la vez, evitándole una fatiga innecesaria. Además, en esta primera propuesta se han implementado dos técnicas de niching, denominadas Deterministic Crowding y Restricted Tournament Selection. Estas técnicas tienen la capacidad de mantener ciertas propiedades dentro de la población de soluciones, preservar múltiples nichos con soluciones cercanas a los óptimos locales, y reducir la probabilidad de quedar atrapado en ellos. De esta manera el algoritmo se enfoca simultáneamente en más de una región (nicho) en el espacio de búsqueda, lo cual es esencial para descubrir varios óptimos en una sola ejecución. Por otro lado, en la segunda aproximación al problema, se ha implementado una estrategia evolutiva paralela, muy útil para los problemas de alta complejidad en los que el tiempo de ejecución con un enfoque evolutivo secuencial es prohibitivo. La propuesta desarrollada, denominada IMGA, está basada en un algoritmo genético paralelo de grano grueso con múltiples poblaciones o islas. Este enfoque se caracteriza por evolucionar varias subpoblaciones independientemente, entre las que se intercambian individuos, haciendo posible explorar diferentes regiones del espacio de búsqueda, al mismo tiempo que se mantiene la diversidad de la población, permitiendo la obtención de buenas y diversas soluciones. Con ambas propuestas se han realizado experimentos que han arrojado resultados muy satisfactorios, encontrando buenas soluciones para un conjunto de problemas bien conocidos en la bibliografía. Estos buenos resultados han permitido la publicación de dos artículos indexados en el primer decil del ranking JCR (Journal Citation Reports).The present doctoral thesis develops two different approaches to the Unequal Area Facility Layout Problem (UA-FLP). The first approach encompasses the designer’s knowledge on classic optimization of algorithms in pursuance of good quantitative solutions (e.g. minimizing the materials flow) and also opens the possibility to include the contribution of the designer by means of his expertise and personal preferences. A clustering procedure has been used to facilitate human intervention in the process of finding solutions. This allows the underlying solutions to be classified in the search in order to present the designer with sufficiently representative solutions and, at the same time, avoiding unnecessary fatigue. In addition, two niching techniques have been implemented, called Deterministic Crowding and Restricted Tournament Selection. These techniques have the ability to maintain certain properties within the solutions space, preserve multiple niches with solutions close by local optimums, and reduce the probability of being trapped in them. In this way, the algorithm focuses simultaneously on more than one region (niche) in the search space, which is essential to discover several optimums in a single execution. The second approach to the problem comprises the implementation of a parallel evolutionary strategy. This method is useful for problems of high complexity in which the execution time using a sequential evolutionary approach is prohibitive. The proposal developed, called IMGA (Island Model Genetic Algorithm), is based on a parallel genetic algorithm of multiple-population coarse-grained. This is characterized by evolving several subpopulations independently among which individuals are exchanged. Different regions of the search space can be explored while the diversity of the population is maintained. Satisfactory and diverse solutions have been obtained as a result of this method. Experiments with both proposals have been carried out with satisfactory results, providing good solutions for a set of problems well known in the literature. These results were already published in two papers indexed in the first decile of the JCR (Journal Citation Reports) ranking
    corecore