2,748 research outputs found

    Unsupervised Learning via Total Correlation Explanation

    Full text link
    Learning by children and animals occurs effortlessly and largely without obvious supervision. Successes in automating supervised learning have not translated to the more ambiguous realm of unsupervised learning where goals and labels are not provided. Barlow (1961) suggested that the signal that brains leverage for unsupervised learning is dependence, or redundancy, in the sensory environment. Dependence can be characterized using the information-theoretic multivariate mutual information measure called total correlation. The principle of Total Cor-relation Ex-planation (CorEx) is to learn representations of data that "explain" as much dependence in the data as possible. We review some manifestations of this principle along with successes in unsupervised learning problems across diverse domains including human behavior, biology, and language.Comment: Invited contribution for IJCAI 2017 Early Career Spotlight. 5 pages, 1 figur

    Invariant Information Clustering for Unsupervised Image Classification and Segmentation

    Full text link
    We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsupervised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. github.com/xu-ji/IICComment: International Conference on Computer Vision 201

    To Compress or Not to Compress -- Self-Supervised Learning and Information Theory: A Review

    Full text link
    Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the \textit{self-supervised information-theoretic learning problem}. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks
    • …
    corecore